期刊文献+

B样条曲面方向投影问题的几何计算方法

Geometric Method for the Directional Projection Problem of B-Spline Surfaces
下载PDF
导出
摘要 B样条曲面方向投影问题可以通过求解方程组的方法来解决.由于方程组所有根中往往只有一个或甚至没有根与待求解的最近点对应,因而绝大多数的求根计算量是不必要的.为此讨论了B样条曲面的方向投影问题,提出一种简单且高效稳定的几何计算方法.该方法充分利用了B样条函数的凸包性,同时结合B样条函数稳定可靠的分裂算法给出了相应的几何剪枝方法.与传统的求解非线性方程组的计算方法相比,文中方法可以剪除绝大部分非线性方程组对应的根,且不需要Newton迭代,可以应用于平面/B样条曲面间的求交测试问题及B样条曲面包围盒的计算问题.实例结果表明,该方法具有比传统的相关方法更高的计算效率和更好的稳定性. The directional projection problem of B roots of a non-linear equation system. Usually one -spline surfaces can be solved by computing the or none of the roots of the equation system is mapping to the closest point where the minimum distance occurs, and most of the computation on finding the roots of the equation system is unnecessary. A simple but efficient geometric pruning method is presented for the directional projection problem of B-spline surfaces. It utilizes the convex property of the B-spline basis functions and the robust subdivision algorithm of B-spline surface, and it is able to directly detect whether the minimum directional distance occurs at a corner point or at a boundary curve of the B-spline surface. Compared with conventional root-finding methods of a nonlinear equation system, it can exclude most of the roots and needs no numerical iterative method such as the Newton method. The proposed algorithm can be applied in the intersection testing problem between a plane and a B-spline surface, and the encapsulation box computation problem of B-spline surfaces. Examples are given to show both efficiency and robustness of the new method.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第6期721-724,共4页 Journal of Computer-Aided Design & Computer Graphics
基金 国家“九七三”重点基础研究发展计划项目(2004CB318000) 国家自然科学基金(60803076,60773179,60625202) 霍英东教育基金会基金(111070) 浙江大学CAD&CG国家重点实验室开放基金(A0804)
关键词 方向投影 B样条曲面 几何剪枝方法 directional projection B-spline surface geometric pruning method
  • 相关文献

参考文献12

  • 1Kay T. L, Kajiya J T. Ray tracing complex scenes [C]// Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, Dallas, 1986:269-278
  • 2Hu S M, Wallner J. A second order algorithm for orthogonal projection onto curves and surfaces [J]. Computer Aided Geometric Design, 2005, 22(3): 251-260
  • 3Johnson D E, Cohen E. A framework for efficient minimum distance computations [C]//Proceedings of IEEE International Conference on Robotics & Automation,Leuven, 1998:3678-3684
  • 4Piegl L A, Tiller W. Parameterization for surface fitting in reverse engineering [J]. Computer-Aided Design, 2001, 33 (8) : 593-603
  • 5Elber G, Kim M S. Geometric constraint solver using multivariate rational spline functions [C]//Proceedings of the 6th ACM Symposium on Solid Modeling and Applications,Ann Arbor, 2001:1-10
  • 6Johnson D E, Cohen E. Distance extrema for spline models using tangent cones [C] //Proceedings of the Conference on Graphics Interface, Victoria, 2005 : 169-175
  • 7Patrikalakis N M, Maekawa T. Shape interrogation for computer aided design and manufacturing [M]. Krakowska: Springer, 2001
  • 8Sederberg T W, Nishita T, Curve intersection using Bezier clipping [J]. Computer-Aided Design, 1990, 22 (9) : 538- 549
  • 9Zhou J M, Sherbrooke E C, Patrikalakis N M. Computation of stationary points of distance functions [J]. Engineering with Computers, 1993, 9(4): 231-246
  • 10Chen X D, Zhou Y, Shu Z Y, et al. Improved algebraic algorithm on point projection for Bezier curves [C]// Proceedings of the 2nd International Multisymposiums on Computer and Computational Sciences, Iowa City, 2007: 158-163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部