期刊文献+

基于三角形分解和重构的平面多边形变形方法 被引量:7

Polygons Morphing Based on Triangle Decomposition and Reconstruction
下载PDF
导出
摘要 为解决较复杂的不同拓扑结构的二维形状渐变问题,提出一种基于三角形分解和重构的平面多边形变形方法.该方法将图形多层分解为三角形,保留分解过程中的各层边角信息;然后通过线性插值各层边长比例及角度,并结合刚性变换方法重构中间多边形的细节和框架,以达到变形的目的.该方法适用于任意点数的多边形,具有一般性.实验结果表明,文中方法能很好地解决变形序列中的萎缩问题,并且对较复杂的狭长图形也能避免自交现象,变形效果自然. This paper presents a novel approach for 2D polygon morphing with complicated and different topology by using triangle decomposition and reconstruction. We decompose polygons into triangles and preserve lengths and angles of every decomposing layer. Then we reconstruct details of the intermediate polygons by interpolating the length ratios and angles, and attain the frameworks by employing the as-rigid-as-possible shape interpolation to blend shapes. The method is general and could be used for polygons with any number of vertexes. Experimental results show that the morphing sequence produced by this method can avoid shrinkage and self-intersections commendably even when the polygons possess slim belts.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第6期730-735,共6页 Journal of Computer-Aided Design & Computer Graphics
关键词 变形 三角分解 重构 萎缩 自交 morphing triangle decomposition reconstruction shrinkage self-intersection
  • 相关文献

参考文献8

  • 1Ohbuchi R, Kokojima Y, Takahashi S. Blending shapes by using subdivision surfaces [J]. Computers & Graphics, 2001, 25(1): 41-58
  • 2Sederberg T W, Gao P S, Wang G J, et al. 2-D shape blending: an intrinsic solution to the vertex path problem [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Anaheim, 1993:15-18
  • 3杨文武,冯结青,金小刚,彭群生.基于特征分解的2-D多边形渐变[J].软件学报,2005,16(2):309-315. 被引量:14
  • 4Hui K C, Li Y D. A feature based shape blending technique for industrial design [J]. Computer-Aided Design, 1998, 30 (10) : 823-834
  • 5Shapira M, Rappoport A. Shape blending using the star skeleton representation [J]. IEEE Computer Graphics & Applications, 1995, 15(2): 44-50
  • 6Alexa M, Cohen-Or D, Levin D. As rigid-as-possible shape interpolation[C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orleans, 2000:157- 164
  • 7Gotsman C, Surazhsky V. Guaranteed intersection-free polygon morphing [J]. Computers & Graphics, 2001, 25 (1) : 67-75
  • 8何磊,蒋大为,张永锋,周敏.基于简化多边形类正切空间表示的图形渐变算法[J].计算机辅助设计与图形学学报,2007,19(3):304-310. 被引量:9

二级参考文献16

  • 1Sederberg TW, Greenwood E. A physically based approach to 2D shape blending. Computer Graphics (Proc of the SIGGRAPH),1992,26(2):25-34.
  • 2Zhang Y. A fuzzy approach to digital image warping. IEEE Computer Graphics & Applications, 1996,16(4):34-41.
  • 3Carmel E, Cohen-Or E. Warp-Guided object-space morphing. The Visual Computer, 1997,13(9,10):465-478.
  • 4Sederberg TW, Gao P, Wang G, Mu H. 2D shape blending: An intrinsic solution to the vertex path problem. In: James TK, ed. Proc of the SIGGRAPH'93. New York: ACM Press, 1993. 15-18.
  • 5Shapira M, Rappoport A. Shape blending using the star-skeleton representation. IEEE Computer Graphics & Applications,1995,15(2):44-50.
  • 6Alexa M, Cohen-Or D, Levin D. As-Rigid-As-Possible shape interpolation. In: Marisa C, ed. Proc of the SIGGRAPH 2000. New York: ACM Press, 2000. I57-I64.
  • 7Gotsman C, Surazhsky V. Guaranteed intersection-free polygon morphing. Computers & Graphics, 2001,25(1):67-75.
  • 8Sederberg T W,Greenwood E.A physically based approach to 2D shape blending[J].Computer Graphics,1992,26(2):25-34
  • 9Zhang Yuefeng.A fuzzy approach to digital image warping[J].IEEE Computer Graphics and Applications,1996,16(7):34-41
  • 10Cohen S,Elber G,Bar-Yehuda R.Matching of freeform curves[J].Computer-Aided Design,1997,29(5):369-378

共引文献20

同被引文献47

  • 1杨文武,冯结青,金小刚,彭群生.基于特征分解的2-D多边形渐变[J].软件学报,2005,16(2):309-315. 被引量:14
  • 2吴文国,金小刚,冯结青,彭群生.三角形渐变动画[J].计算机辅助设计与图形学学报,2005,17(7):1615-1619. 被引量:10
  • 3何磊,蒋大为,张永锋,周敏.基于简化多边形类正切空间表示的图形渐变算法[J].计算机辅助设计与图形学学报,2007,19(3):304-310. 被引量:9
  • 4Blum H. A transformation for extracting new descriptors of shape [C] //Proceedings of Models for the Perception of Speech and Visual Form, Cambridge, 1967: 362-380.
  • 5Lieutier A. Any open bounded subset of R^n has the same homotopy type as its medial axis [J]. Computer Aided Design, 2004, 36(11): 1029-1046.
  • 6Culvcr T, Keyser J, Manocha D. Accurate computation of the medial axis of a polyhedron [C] //Proceedings of the 5th ACM Symposium on Solid Modeling, Ann Arbor, 1999: 179- 190.
  • 7Lee D T. Medial axis transformation of a planar shape [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(4): 363-369.
  • 8Giblin P J, Kimia B B. A formal classification of 3D medial axis points and their local geometry [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (2) : 238-251.
  • 9Pizer S M, Oliver W R, Bloomberg S H. Hierarchical shape description via the multiresolution symmetric axis transform [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(4): 505-511.
  • 10Lam L, Lee S W, Suen C Y. Thinning methodologies- a comprehensive survey [J]. IEGE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(9): 869 -885.

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部