期刊文献+

一种简单的资源受限的群体演化模型 被引量:1

A Simple Model of Population Evolution with Limited Resource
下载PDF
导出
摘要 在资源有限的环境中,生物竞争生存资源,能力强的个体较之能力弱的个体能够获取更多生存资源,有更多繁殖后代的机会。为了探究不同生存能力的个体构成的群体在资源有限的环境中的演化过程,提出一种简单的群体演化模型,刻画包含个体生命的复制、变异和死亡等生命特性的群体动力学。仿真结果显示个体能力强的群体规模逐渐增长,而个体能力弱的群体规模不断变小,但是由于相互变异的存在,最终群体规模趋于一个均衡值。这与模型预测的相符。 In limited resources environment, organisms compete for resources. As a result, skilled individual can acquire more resources than unskilled one, thus the former has more chance to reproduce. To study evolution of different population which consists of individuals with distinct skill, a simple model of population evolution is proposed, which depicts population dynamics involving individual's life characteristics, such as reproduction, mutation, and death. Results of simulation show that the size of population consisting of skilled individuals increases gradually, while the size of population consisting of unskilled individuals shrinks continuously. Because of mutual mutation, however, the size of each population tends to an equilibrium. The results coincide with prediction of model.
作者 秦进 李歆
出处 《复杂系统与复杂性科学》 EI CSCD 2009年第2期82-86,共5页 Complex Systems and Complexity Science
关键词 演化 群体动力学 环境资源 模型 evolution population dynamics environmental resources model
  • 相关文献

参考文献5

  • 1Nowak M A.Evolutionary Dynamics-Exploring the Equations of Life[M].Cambridge MA:The Belknap Press of Harvard University Press,2006.
  • 2Beckmann B E,McKinley P K,Ofria C.Evolution of an adaptive sleep response in digital organisms[EB/OL].[2008-06-03].ftp://ftp.cse.msu.edu/pub/crg/PAPERS/ecal-2007-sleep.pdf
  • 3Virgo N,Harvey I.Entropy production in ecosystems[EB/OL].[2008-06-03].http://www.springerlink.com/content/q201r673033312g7.
  • 4Standish R K.Open-ended artificial evolution[J].International Journal of Computational Intelligence and Applications,2003,3(2):167-175.
  • 5Vincent T L,Brown J S.Evolutionary Game Theory,Natural Selection,and Darwinian Dynamics[M].Cambridge:Cambridge University Press,2005.

同被引文献19

  • 1杜海峰,公茂果,焦李成,刘若辰.用于高维函数优化的免疫记忆克隆规划算法[J].自然科学进展,2004,14(8):925-933. 被引量:19
  • 2LIN C H, CHOY K L, HOG T S, NG T W. A genetic algorithm-based optimization model for supporting green transportation operations[J]. Expert Systems with Applications, 2014, 41(7): 3284-3296.
  • 3DONG W Y, ZHOU M C. Gaussian classifier-based evolutionary strategy for multimodal optimization[J]. IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(6): 1200-1216.
  • 4KHATOD D K, PANT V, SHARMA J. Evolutionary programming based optimal placement of renewable distributed generators[J]. IEEE Transactions on Power Systems, 2013, 28(2): 683-695.
  • 5MIRJALILI S, LEWIS A, SADIQ A S. Autonomous particles ~oups for particle swarm optimization[J]. Arabian Journal for Science and Engineering, 2014, 39(6): 4683-4697.
  • 6ZHENO L. An improv~l monkey algorithm with dynamic adaptation[J]. Applied Mathematics and Computation, 2013, 222(1): 645-657.
  • 7张冬丽,唐英干,关新平.用改进的人工蜂群算法设计AVR系统最优分数阶PID控制器[J].自动化学报,2014,40(5):973-979.
  • 8ZHANG C J, LI X Y, GAOL WU Q, An improved electromagnet- ism-like mechanism algorithm for constrained optimization[Y]. Expert Systems with Applications, 2013, 40(14): 5621-5634.
  • 9FORMATO R A. Cenlxal force optimization with variable initial probes and adaptive decision space[y]. Applied Mathematics and Computation, 2011, 2(17): 8866-8872.
  • 10MIRJALILI S, LEWIS A. Adaptive gbest-gulded gravitational search algorithm[J]. Neural Computing and Applications, 2014, 25(7): 1569-1584.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部