摘要
现有的模糊逻辑一般采用定量的方法描述和处理逻辑运算,不能全面满足逻辑运算的公理化框架.使用布尔代数上的运算解释逻辑运算的语义,可以极好地满足除连续性以外的公理的要求.基于新定义的距离函数概念,能够在定性的意义下较为合理地解释逻辑运算的连续性,从而说明定性方法具有十分清楚的直观背景.
Logical connectives are quantitatively characterized in the existing formalisms of fuzzy logic, and fail to satisfy the axiomatic requirements wholly. Using Boolean operations to interprete the semantics of logical connectives can well meet the axiomatic requirements except continuity. Based on the new concept of distance function defined on a Boolean algebra, it is shown that continuity axiom holds also in qualitative point of view. Therefore qualitatively characterizing logical connectives has a sound natural background.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
1998年第2期1-3,共3页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金
关键词
逻辑运算
布尔代数
距离函数
连续性
logical connectives
Boolean algebra
distance function