摘要
对既含等式又含不等式约束的几何规划问题,引进了一类新的变量替换,把原规划转化为更为特殊的规划,使之具有更好的分析性质,更易于构造算法.文中不仅给出了算法,而且还给出了算法的收敛性及收敛速度,并用计算实例检验了算法的有效性和可实现性.
The solving method for geometric programming with both equality and inequality constraints is discussed. By using a new class of variable replacement, the old programming problem is transformed into a special one with good analytical property. Apart from the algorithm, the convergency and the convergence rate of the algorithm are also presented. The feasibility and effectiveness of the algorithm are illustrated by a numerical example.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
1998年第6期90-94,共5页
Journal of Xi'an Jiaotong University
关键词
几何规划
算法
收敛性
geometric programming algorithm convergence properties