期刊文献+

基于混合编码遗传算法和有限元分析的压电结构载荷识别 被引量:3

Load identification of piezoelectric structures by using genetic algorithm and finite element analysis
下载PDF
导出
摘要 与传统的优化算法相比,遗传算法不需要计算目标函数的导数信息,便于迭代,可实现全局寻优。因此,本文提出一种采用混合编码的遗传算法与有限元分析相结合,对复合材料层合板、壳进行载荷识别的新方法。在遗传算法求解过程中,设计变量的编码方法选择是其重要环节,二进制编码容易产生连续函数离散化时的映射误差,且其求解精度与染色体的编码长度紧密相关,过长的染色体描述虽可提高精度,但会显著降低算法的求解效率。为此,本文提出采用混合编码的方法进行载荷识别,即用二进制编码表征载荷作用位置,浮点数编码表示载荷的大小。这一方法大大降低了染色体的长度,并显著提高了计算效率和精度。 In this paper, a new approach is presented for solving the problems of load identification, which combines the genetic algorithm(GA) and finite element analysis. As compared with the traditional optimization and search algorithms, GA search from a population of points in the region of the whole solution space, rather than a single point, and can obtain the global optimum. Moreover, GA has the ad vantage of easy implementation, because only an objective function is required and derivatives or other auxiliary information are not necessary. To implement the genetic algorithm for the determination of the optimal design, it is necessary first to devise a general coding system for the representation of the design variables. Most commonly the design variables are coded by a bit-string and the fact that, with this binary representation, the design variables can be coded only as integers, means that there will be usually loss of precision due to the binary representation and the length of each chromosome as well as the population of chromosomes must be very huge in order to obtain a relatively accurate model. In this paper, the location and magnitude of the load are coded with binary string and real number representation, respectively; therefore, the chromosome length will be substantially shorter, which greatly reduces the computational effort.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第3期330-335,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10772077) 航空科学基金(2007ZD52047)资助项目
关键词 载荷识别 遗传算法 有限元 压电结构 优化算法 load identification genetic algorithm finite element method piezoelectric structure
  • 相关文献

参考文献10

二级参考文献40

共引文献39

同被引文献42

  • 1周晚林,王鑫伟,胡自力.压电智能结构荷载识别方法的研究[J].力学学报,2004,36(4):491-495. 被引量:15
  • 2郑世杰.八节点压电固体单元的再研究[J].压电与声光,2004,26(4):321-324. 被引量:4
  • 3Chandrashekhara K,Okafor A C,Jiang Y P. Estimation of contact force on composite plates using impact induced strain and neural networks[J]. Composites Part B: Engineering, 1998,29(4):363-370.
  • 4Gaul L, Hurlebaus S. Identification of the impact location on a plate using wavelets[J]. Mechanical Systems and Signal Processing, 1998,12 (6) : 783 -795.
  • 5Meo M,Zumpano G,Piggott M. Impact identification on a sandwich plate from wave propagation responses[J]. Composite Structures, 2005,71 (3-4): 302-306.
  • 6Gual L, Hurlebaus S. Determination of the impact force on a plate by piezoelectric film sensors[J]. Archive of Applied Mechanics, 1999,69 (9-10) : 691-701.
  • 7Hu N, Fukunaga H, Matsumoto S. An efficient approach for identifying impact force using embedded piezoelectric sensors[J].International Journal of Impact Engineering, 2007,34(7) :1258 -1271.
  • 8ZHENG Shijie,WANG Xinwei,CHEN Wanji. The formulation of a refined hybrid enhanced assumed strain solid shell element and its application to model smart structures containing distributed piezoelectric sensors/actuators[J]. Smart Materials and Structures, 2003,13(4) : N43-N50.
  • 9Haywood J, Coverley P T, Staszewski W J. An automatic impact monitor for a composite panel employing smart sensor teehnology[J]. Smart Materials and Structures, 2005,14(1) :265-271.
  • 10HAGAN T M DEMUTH B H BEALE H M著 戴葵等译.神经网络设计[M].北京:机械工业出版社,2002..

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部