期刊文献+

数学网格和物理网格分离的有限单元法(Ⅱ):粘聚裂纹扩展问题中的应用 被引量:13

An enhanced finite element method with separate mathematical and physical mesh(Ⅱ): application in propagation of cohesive crack
下载PDF
导出
摘要 强化有限单元法将物理网格与数学网格分离开来,可以方便地描述非连续变形;粘聚区域模型是模拟断裂过程区作用最简单有效的方法,且可以避免裂纹尖端的应力奇异性。本文以平面问题为例,将强化有限单元法与粘聚区域模型相结合.利用富集数学节点描述任意粘聚裂纹扩展过程中的非连续变形问题,提出了裂纹扩展过程中数学节点富集和数学单元定义的方法。本文还导出了与平面4~8节点平面等参单元对应的8~16节点粘聚裂纹单元列式。最后.通过三点弯梁的裂纹扩展过程模拟验证了本文提出的粘聚裂纹扩展模拟方法的有效性。 Abstract: Basing on separation between mathematical meshes and physical meshes, the enhanced finite element method (FEM^++ ) makes it easy to describe discontinuous deformation. The cohesive zone model (CZM) which can avoid the stress singularity at the crack tip is one of the most effective and simplest model to simulate the interaction within fracture process zone. FEM^++ and CZM are applied to simulate the propagation of arbitrary cohesive crack by enriching mathematical node in this paper. The rule of mathematical node enrichment and mathematical element definition are also summarized, and an 8-16 node CZM element is proposed for cohesive crack. At last, three point bending beam is analyzed to illu- minate the efficiency of the proposed method.
出处 《计算力学学报》 CAS CSCD 北大核心 2009年第3期408-414,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50778163) "国家973"重点基础研究课题(2007CB714200)资助项目
关键词 强化有限单元法 粘聚区域模型 粘聚裂纹 裂纹扩展 enhanced finite element method cohesive zone model cohesive crack crack propagation
  • 相关文献

参考文献10

  • 1BELYTSCHKO T,BLACK T.Elastic crack growth.in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,1999,45(5):601-620.
  • 2DOLBOW J,MOeS N,BELYTSCHKO T.An extended finite element method for modeling crack growth with frictional contact[J].Computer Methods in Applied Mechanics and Engineering,2001,190 (51-52):6825-6846.
  • 3HANSBO A,HANSBO P.A finite element method for the simulation of strong and weak discontinuities in solid mechanics[J].Computer Methods in Applied Mechanics and Engineering,2004,193:3523-3540.
  • 4DUGDALE D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8:100-108.
  • 5BARENBLATT G I.The mathematical theory of equilibrium cracks in brittle fracture[J].Advances in Applied Mechanics,1962,7:55-129.
  • 6SHET C,CHANDRA N.Analysis of energy balance when using cohesive zone models to simulate fracture processes[J].Journal of Engineering Materials and Technology,2002,124(4):440-450.
  • 7凌道盛,徐小敏,陈云敏.数学网格和物理网格分离的有限单元法(Ⅰ):基本理论[J].计算力学学报,2009,26(3):401-407. 被引量:11
  • 8YANG Q D,THOULESS M D.Mixed-mode fracture analyses of plastically-deforming adhesive joints[J].International Journal of Fracture,2001,110 (2):175-187.
  • 9WANG J S,SUO Z.Experimental determination of interfacial toughness curves using Brazil-nut-sandwiches[J].Acta Metallurgica et Materialia,1990,38 (7):1279-1290.
  • 10NICOLAS MOES,Ted Belytschko.Extended finite element method for cohesive crack growth[J].Engineering Fracture Mechanics,2002,69(7):813-833.

二级参考文献8

  • 1ZIENKIEWICZ O C,TAYLOR R L,ZHU J Z.TheFinite Element Method:Its Basis and Fundamentals[M].Oxford:Elsevier Butterworth-Heinemann,2005.
  • 2BELYTSCHKO T,LIU W K,MORAN M.Nonlinear Finite Elements for Continua and Structures[M].New York:John Wiley & Sons Ltd,2000.
  • 3NEEDLEMAN A.Material rate dependent and mesh sensitivity in localization problems[J].Computer Methods in Applied Mechanics and Engineering,1988,67:68-85.
  • 4MO(E)S N.DOLBOW J,BELYTSCHKO T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131-150.
  • 5MO(E)S N,BELYTSCHKO T.Extended finite element method for cohesive crack growth[J].Engineering Fracture Mechanics,2002,69:813-833.
  • 6BABU(S)KA I.STROUBOULIS T,COPPS K.The design and analysis of the generalized finite element method[J].Comput Methods Appl Mech Engrg,2003,181(1):43-69.
  • 7STROUBOULIS T,COPPS K,BABUSKA I.The generalized finite method[J].Comput Methods Appl Mech Engrg,2001,190:4081-4193.
  • 8HANSBO A,HANSBO P.A finite element method for the simulating of strong and weak discontinuities in solid mechanics[J].Comput Methods Appl Mech Engrg,2004,193:3523-3540.

共引文献10

同被引文献174

引证文献13

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部