摘要
对三角域上C1连续的有理样条曲面保正插值的问题进行了研究.应用三角剖分上的有理样条插值曲面重心坐标下的等价形式,由Bézier曲面保正的充分条件得到了有理样条函数系数的约束条件,从而保证了有理样条函数的非负性,该方法是一种局部调整的方法.数值实验表明该算法是可行并且有效的.
In this paper, a positivity-preserving rational interpolation scheme is developed. Based on the equivalent form of rational spline on triangulation, the conditions on the coefficients of rational spline are given by the sufficient nonnegativity conditions of Bezier patch. It is a local method. At the end of the paper, numerical examples show the method feasible and effective.
出处
《辽宁师范大学学报(自然科学版)》
CAS
2009年第2期151-153,共3页
Journal of Liaoning Normal University:Natural Science Edition
基金
辽宁省教育厅科学技术研究项目(2008358)
关键词
有理样条
保正
插值
rational spline
positivity-preserving
interpolation