期刊文献+

基于遗传算法的网络入侵检测 被引量:6

Network Intrusion Detection Based on Genetic Algorithm
下载PDF
导出
摘要 入侵检测技术是提高计算机系统安全性的有效途径。本文以提高入侵检测系统检测速度和降低误报警率为目的,以网络信息为数据源,经过对入侵检测历史与现状的分析和对目前入侵检测技术的研究。针对目前大多数入侵检测系统存在的局限性,依据入侵检测框架提出了一种利用遗传算法的入侵检测模型,仿真实验结果表明该检测算法可以有效地进行入侵检测,使入侵检测的速度和准确性有了显著提高。 Intrusion detection technology is to improve the security of computer systems an effective way. In this paper, intrusion detection system to improve the detection rate and reduce the rate of False Alarm for the purpose of the network information for the data source, after a history of intrusion detection and analysis of the status quo and the current intrusion detection techniques. Most of the current intrusion detection system limitations, intrusion detection framework based on a genetic algorithm using the intrusion detection model, simulation results show that the detection algorithm can effectively carry out intrusion detection, intrusion detection so that the speed and accuracy Has improved significantly.
出处 《微计算机信息》 2009年第15期53-54,36,共3页 Control & Automation
关键词 入侵检测 网络 遗传算法 网络入侵检测 Intrusion Detection Network Genetic Algorithms Network Intrusion Detection
  • 相关文献

参考文献4

二级参考文献20

  • 1常卫东,刘完芳.基于遗传算法网络入侵检测系统的研究与实现[J].网络安全技术与应用,2004(10):32-34. 被引量:2
  • 2唐旭辉,方勇.基于.NET的下一代网络视频监控系统的设计[J].微计算机信息,2005,21(1):49-50. 被引量:25
  • 3Lunt T. A survey of intrusion detection techniques.Computers and Security, 1993, 12. 405-418.
  • 4Jain A, Mao J, Mohiuddin K M. Artificial neural networks: a tutorial. IEEE Computer, 1996, 29(3):31 -33.
  • 5Lane T, Brodley C. An application of machine learning to anomaly detection, in: Stephen B ed. The 20th National Information Systems Security Conference. Baltimore, 1997. Baltimore: Boulder. CO, 1997. 366-377.
  • 6E Eskin.Anomaly detection over noisy data using learned probability distributions[A].Proceedings of the 17th International Conference on Machine Learning[C].San Mateo,CA:Morgan Kaufmann,2000.255-262.
  • 7T Lane,C Brodley.Temporal sequence learning and data reduction for anomaly detection[J].ACM Trans Info System Security,1999,2:295-331.
  • 8T Lane,C E Brodley.Data reduction techniques for instancebased learning from human/computer interface data[A].Proceedings of the 17th International Conference on Machine Learning[C].San Mateo,CA:Morgan Kaufmann,2000.519-526.
  • 9D Dasgupta,F Gonzalez.An immunity-based technique to characterize intrusions in computer networks[J].IEEE Transactions on Evolutionary Computation,2002,3(6):281-291.
  • 10E Zitzler,L Thiele.Multi-objective evolutionary algorithms:comparative case study and the strength pareto approach[J].IEEE Trans of Evolutionary Computation,1999,3(4):257-271.

共引文献54

同被引文献21

  • 1吴璟莉,李陶深.基于遗传算法的物流配送车调度优化算法[J].广西科学院学报,2005,21(4):209-211. 被引量:1
  • 2涂宏斌,周新建.基于支持向量机的轴承表面缺陷检测[J].现代制造工程,2006(9):90-92. 被引量:9
  • 3申红婷.遗传算法在网络入侵检测中的应用[C].中国电子学会第十五届信息论学术年会暨第一届全国网络编码学术年会论文集(上册).北京:国防工业出版社,2008:598-601.
  • 4Wang Ling,Tang Fang,Wu Hao.Hybrid genetic algorithm based on quantum computing for numerical optim ization and parameter estimation[J].Applied Mathematics and Computation,2005,171(2):1141-1156.
  • 5Lincoln Labs.KDD-cup data set[EB/OL].http://kdd.ics.uci.edu/databases/kddcup99.html.2004-12-02.
  • 6Yong-Huang Lin, Pin-Chan Lee, Ta-Peng Chang. Adaptive and high-precision grey forecasting model[J]. Expert Systems with Applications,2009,36(6): 9658-9662.
  • 7Zou Lihua, Dai Suliang, John Butterworth, Xing Ma, Bo Dong, Aiping Liu. Grey forecasting model for active Vibration control systems[J]. Journal of Sound and Vibration,2009,322(4-5): 690-706.
  • 8Chi-Jie Lu, Tian-Shyug Lee, Chih-Chou Chiu. Financial time series forecasting using independent component analysis and support vector regression [J]. Decision Support Systems,2009,47 (2): 115-125.
  • 9[美]Z.米凯利维茨.演化程序一遗传算法和数据编码的结合.北京:科学出版社.2000.
  • 10修妍,马军海.基于径向基神经网络的局域预测法及其应用[J].计算机工程,2008,34(9):19-21. 被引量:11

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部