摘要
移动IPv6的路由寻址是一个最短路径优化问题,最著名的两种最短路径算法是迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd)算法,这两种算法的时间复杂度都是O(n3)。本文通过对这两种经典算法的研究与分析,提出一种求最短路径的优化算法。该算法的时间复杂度是O(e*n),在连通图中,该算法能够比Floyd算法少近50%的迭代次数,在非连通图中e<<n2,此算法的时间复杂度O(e*n)<<O(n3),比传统算法具有更明显的优势。
The routing of Mobile IPv6 is a shortest path problem, the most famous of the two shortest path algorithm are Dijkstra algorithm and Floyd algorithm. Both the two algorithms have the same time complexity as O (n^3). Through the research and analysis of these two classic algorithms, the essay aims to get an optimization algorithm for the shortest path, and time complexity is O(e^*n). In the connectivity map, the algorithm can be less than Floyd algorithm nearly 50 percent of the number of iterative; the time complexity of the algorithm is (e ^* n), in non-connectivity map, e 〈〈n2, and it has obvious advantages than traditional algo- rithm.
出处
《微计算机信息》
2009年第15期164-166,共3页
Control & Automation
基金
广东省科技计划工业攻关项目
基金申请人:俞鹤伟
项目名称:基于移动IPv6的无线互联网切换管理技术研究
基金颁发部门:广州省科技厅(2006A10101004)