期刊文献+

基于序列蒙特卡罗滤波的人脸跟踪算法 被引量:1

Face Tracking Algorithm Based on Sequential Monte Carlo Filter
下载PDF
导出
摘要 结合图像的色彩分布和空间布局,提出了一种基于HSV色彩和空间信息的序列蒙特卡罗滤波人脸跟踪算法。通过比较采样值和期望值的特征距离来计算采样状态对应的权值。利用加权采样值来估计未知量后验概率,当采样数趋于无穷时,由大数定理保证采样值分布逼近于真实值分布。仿真实验给出了利用加权采样对人脸跟踪的结果。实验表明,基于序列蒙特卡罗的人脸跟踪算法计算简单有效,能够准确预测人脸的位置并且很好地跟踪其运动轨迹。 Incorporating color distribution and spatial layout, this paper proposes a sequential Monte Carlo filter tracking face algorithm using color and spatial information in HSV color space. By computing the distance between sample and target, different weights associated with every sample and the posterior state vector can be computed. The samples distribution trends to the state distribution, whose validity is guaranteed by the strong law of large numbers (SLLN). Experimental results show the efficient face tracking performance using weighted sampling.
作者 王全 杜云明
出处 《微计算机信息》 2009年第15期222-224,共3页 Control & Automation
关键词 贝叶斯估计 序列蒙特卡罗滤波 加权采样 概率分布 人脸跟踪 Bayesian estimation sequential Monte Carlo filter weighted sampling probability distribution face tracking
  • 相关文献

参考文献9

  • 1Hammadi Nait-Charif, Stephen J. McKenna. Head Tracking and Action Recognition in a Smart Meeting Room [C],the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Graz,Austria, 31 March 2003.
  • 2Koller D, Weber J, and Malik J. Robust multiple car tracking with occlusion reasoning [A]. Proceedings of the 3rd European Conference on Computer Vision [C]. Stockholm, Sweden. 1994, 189-196.
  • 3M.Pachter,P R Chandler. Universal Linearization Concept for Extended Filters. IEEE Trans. on Aerospace and Electronic System, 1993, 29(3):946-961.
  • 4A Doueet, J F G de Freitas and N J Gordon. An introducetion to sequential Monte Carlo methods, in Sequential Monte Carlo Methods in Practice. 2001, Springer-Verlag: New York.
  • 5Belviken E, Acklam P J. Monte Carlo filters for non-linear state estimation [J]. Automatica, 2001, 37 (1) :1772183.
  • 6J Carpenter, P Clifford and P Fearnhead. Improved Particle Filter for Non-linear Problems. In IEE Proceedings on Radar and Sonar Navigation, 1999.
  • 7M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174-188, February 2002.
  • 8Isard M, Blake A. Condensation-conditional density propagation for visual tracking[J].International Journal Computing Vision, 1998, 29(1), 5-28.
  • 9王雪立,关永,韩相军.基于DM642的嵌入式人脸检测与追踪系统研究[J].微计算机信息,2006(01Z):54-56. 被引量:3

二级参考文献2

共引文献2

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部