期刊文献+

蚁群算法在数据挖掘中的研究

下载PDF
导出
摘要 随着信息分布越来越广泛及信息量的迅猛增加,传统的数据挖掘方法也难以胜任,因此,分布式数据挖掘技术成为了人工智能与数据库领域,文章研究一种基于蚁群算法的分布式数据挖掘方法,该方法模拟自然界中由简单蚂蚁个体组成的群体行为。
出处 《乐山师范学院学报》 2009年第5期3-5,共3页 Journal of Leshan Normal University
基金 川北医学院苗圃基金项目资助(08基-17)
  • 相关文献

参考文献2

二级参考文献12

  • 1Dorigo M,Maniezzo V,Colorni A.Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Trans On System,Man,and Cybernetics,1996 ;26( 1 ) :29~41
  • 2E Lumber,B Faieta. Diversity and adaption in populations of clustering ants[C].In:J-A Meyer,S W Wilson Eds. Proceeding of the Third International Conferrence on Simulation of Adaptive Behavior:From Animals to animates, MIT Press/Bradford Books, Cambridge, MA,1994: 501~508
  • 3N Monmarche.On data clustering with artificial ants[C].In:Data Mining with Evolutionary Algorithms,Research Directions-papers from the AAAI Workshop ed. Menlo Park,CA:AAAI press,1999:23~26
  • 4Rafael S Parpinelli,Heitor S Lopes,Alex A Freitas. Data mining with a ant colony optimization algorithm[J].IEEE Trans On Evolution Computing, 2002 ;6 (4): 321~332
  • 5H S Lopes,M S Coutinho,W C Lima. E Sanchez,T Shibata,L Zadeh Eds. A evolutionary approach to simulate cognitive feedback learning in medical domain :Genetic Algorithm and Fuzzy Logic System :Soft Computing Perspectives[M].Singapore: World Scientific, 1998:193~207
  • 6Parepinelli R S,Lopes H S,Freitas A. An Ant Colony Algorithm for Classification Rule Discovery. In H. A. a. R. S. a. C. Newton (Ed.),Data Mining: Heuristic Approach: Idea Group Publishing ,2002.
  • 7Bonabeau E,Dorigo M,Theraulaz G. Swarm Intelligence: From Natural to Artificial Systems. New York: Oxford University Press,1999.
  • 8Dorigo M,Maniezzo V. The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems,Man,and Cybernetics,1996,26(1): 1-13.
  • 9Iourinski D,Starks S A,Kreinovich K. Swarm Intelligence: Theoretical Proof that Empirical Techniques are Optimal. In Proceedings of the 5th Biannual World Automation Congress,USA,2002,13:107-112.
  • 10Schoofs L,Naudts B. Ant Colonies are Good at Solving Constraint Satisfaction Problems. In Proceedings of the 2000 Congress on Evolutionary Computation,USA,2000,2: 1190-1195.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部