摘要
应用分形几何理论研究了硫化物催化剂的表面性质及其与合成甲醇反应性能的关系.由分形维数定量地表征了催化剂表面形貌的几何特征.提出了催化剂表面分形维数具有特定的分布,并用正态分布函数进行了拟合.考察了助催化剂和载体对催化剂表面分形维数的影响,由此探讨了分形维数与催化剂结构和反应性能的关系.对甲醇的时空收率和分形维数进行了关联.
The theroy of fractal geometry in mathematics has been introduced to describe the catalyst morphology.Catalyst surface fractal dimension was measured by Box dimension model.It was found that the catalyst surface can not be described by a single fractal dimension,but some kind of distribution existed.It obeys the nomoal distribution regularity.The distribution function can be used to characterize the non-uniformity on the catalyst surface.Promoters and supports can affect the fractal dimension significantly.The space time yield for methanol correlated well with the fractal dimension of catalyst.When the dimension exceeds a certain specfied value,the methanol STY can increase quickly.
出处
《化工学报》
EI
CAS
CSCD
北大核心
1998年第3期329-334,共6页
CIESC Journal
基金
国家教委博士点专项科研基金
关键词
硫化物
催化剂
甲醇合成
合成
耐硫
sulfide catalyst,methanol synthesis,fractal dimension,surface morphology