期刊文献+

数据流上最近频繁项集挖掘算法 被引量:1

Method for finding recent frequent itemsets over data streams
下载PDF
导出
摘要 数据流频繁项集挖掘是指在数据流中找出出现频数大于给定的最小支持度的项集过程。随着一些新兴应用如传感器网络、网络监控等的出现,数据流中频繁项集挖掘引起了很大的重视。提出了一种新颖的数据流频繁项集挖掘算法RFIF。不同于现有算法,RFIF算法针对现实中的一些实际应用,更多的考虑最近时间发生的事件,但也不完全抛弃历史数据,通过引入GIMT函数,逐渐加大项集支持度的阈值,减少对历史数据中频繁项集的维护。实验验证了算法的有效性。 Mining frequent itemsets in data streams means to find itemsets whose frequence more than minmum support threshold.Due to be widely used for rising applications,such as sensor network,newtwork traffic monitor,mining frequent itemsets in data streams will have a profound future.This paper proposes a new method-RFIF in order to mine frequent itemsets in data streams.RFIF aims at some practical applications in real life,it pays more attention to recent events,but also not discard historical data absolutely.Through using function GIMT,the threshold of maintaining data is increased,and the number of historical data is reduced.At last,the experiment results prove the effectiveness of RFIF.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第18期152-155,共4页 Computer Engineering and Applications
关键词 数据流 数据挖掘 频繁项集 data streams data mining frequent itemsets
  • 相关文献

参考文献11

  • 1Agrawal R,Srikant R.Fast algorithms for mining association rules[C]// Proceedings of International Conference on Very Large Databases,1994:487-499.
  • 2Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//Proe of ACM-SIGMOD Conference, 2000: 1-12.
  • 3Manku G,Motwani R.Approximate frequency counts over data streams[C]//Proceedings of the 28th International Conference on Vetry Large Data Bases Over Data Streams.Kong,China:Morgan Kanfmann, 2002 : 346-357.
  • 4Charikara M,Chenb K,Coltone M F.Finding frequent items in data streams[J].Theoretieal Computer Seienee, 2004,312: 3-15.
  • 5Cormode G,Muthukrishnan S.An improved data stream summary: The count-min sketch and its applications[J].Journal of Algorithms, 2005,55 : 58-78.
  • 6Chang J H.Lee W S.A sliding window method for finding recently frequent itemsets over online data streams[J].Journal of Information Science and Engineering,2004,20:753-762.
  • 7刘学军,徐宏炳,董逸生,钱江波,王永利.基于滑动窗口的数据流闭合频繁模式的挖掘[J].计算机研究与发展,2006,43(10):1738-1743. 被引量:26
  • 8Chi Yun,Wang Hai-xun,Yu P S,et al.Moment:Maintaining closed frequent itemsets over a stream sliding window[J].Journal of Information Science and Engineering,2004,20:753-762.
  • 9Giannella C,Han Jia-wei,Pei Jian,et al.Mining frequent patterns in data streams at multiple time granuXarities [M]//Next Generation Data Mining.Cambridge, Massachusetts : [s.n.], 2002: 191-212.
  • 10Barouni-Ebrahimi M,Ghorbani A A.An online frequency rate based algorithm for mining frequent sequences in evolving data streams[C]//Communication Networks and Services Research Conference, Fredericton, Canada, 14-17 May 2007 : 125-132.

二级参考文献13

  • 1Wei Guang Teng,Ming-Syan Chen,Philip S Yu.A regression-based temporal pattern mining scheme for data streams[C].The Int'l Conf on Very Large Data Bases(VLDB 2003),Berlin,Germany,2003
  • 2Graham Cormode,Flip Korn,S Muthukrishnan,et al.Finding hierarchical heavy hitters in data streams[C].The Int'l Conf on Very Large Data Bases (VLDB 2003),Berlin,Germany,2003
  • 3Graham Cormode,S Muthukrishnan.What's hot and What's not:Tracking most frequent items dynamically[C].The ACM Symp on Principles of Database Systems (PODS 2003),San Diego,CA,USA,2003
  • 4C Sirish,M J Franklin.Streaming queries over streaming data[C].The 28th Int'l Conf on Very Large Data Bases,Hong Kong,2002
  • 5C Giannella,J Han,J Pei,et al.Mining frequent patterns in data streams at multiple time granularities[G].In:H Kargupta,A Joshi,K Sivakumar,et al,eds.Next Generation Data Mining.Cambridge,Mass:MIT Press,2003
  • 6G S Manku,R Motwani.Approximate frequency counts over streaming data[C].The 28th Int'l Conference on Very Large Data Bases (VLDB 2002),Hong Kong,2002
  • 7Song Guojie,Wang Tengjiao,Tang Shiwei,et al.Estimation and maintenance of frequent pattern in data streams[C].National Data Base Conference 2003,Changsha,2003
  • 8Joong Hyuk Chang,Won Suk Lee.Finding recent frequent itemsets adaptively over online data streams[C].The 9th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining (KDD 03),Washington,DC,2003
  • 9N Pasquier,Y Bastide,R Taouil,et al.Discovering frequent closed itemsets for association rules[C].In:Beeri C,et al,eds.Proc of the 7th Int'l Conf on Database Theory.Berlin:Springer-Verlag,1999.398-416
  • 10J Pei,J Han,R Mao.CLOSET:An efficient algorithm for mining frequent closed itemsets[C].In:D Gunopulos,et al,eds.Proc of the 2000 ACM SIGMOD Int'l Workshop on Data Mining and Knowledge Discovery.New York:ACM Press,2000.21-30

共引文献25

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部