期刊文献+

基于版本空间解析中心的多类分类器的泛化性能分析

Generalization Error Bound for the Multi-Class Classification Algorithm Based on the Analytical Center of Version Space
下载PDF
导出
摘要 多类分类是机器学习领域中的重要问题.目前普遍采用的多类分类方法:"one versus all"(OvA)直接利用"标准"的两类分类器重复构造两类分类器,导致计算复杂度较高、分类效率降低.基于支持向量机的多类分类器尽管无需重复构造两类分类器,但由于它对应于版本空间(version space)内最大超球的中心,所以当版本空间为非对称或比较狭长时,它的泛化能力显著降低.而基于版本空间解析中心的多类分类算法M-ACM克服了上述问题.从理论上分析了该分类器的泛化性能,给出了它的泛化误差上界,并进行了实验验证. Analytical center machine, based on the analytical center of version space, outperforms support vector machine, especially when the version space is elongated or asymmetric. While analytical center machine for binary classification is well understood, little is known about corresponding multi-class classification. Multi-class classification is a significant challenge theoretically and practically in the field of machine learning. The current multi-class classification method, one versus all, needs constructing classifiers repeatedly to separate a single class from all the others, which leads to daunting computation and low efficiency of classification. Though multi-class support vector machine corresponds to a simple quadratic optimization, it is not very effective when the version space is asymmetric or elongated. Thus, the multi-class classification approach based on the analytical center of version space, which corresponds to a simple quadratic constrained linear optimization, is proposed to address the above problems. At the same time, in order to validate its generalization performance theoretically, its generalization error upper bound is formulated and proved. Experiments on wine recognition and glass identification dataset show that the multi-class classification approach based on the analytical center of version space outperforms the multi-class support vector machine in generalization error.
出处 《计算机研究与发展》 EI CSCD 北大核心 2009年第6期1003-1008,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60673061) 教育部高等学校博士学科点专项科研基金项目(20070532089) 长沙市科技计划项目(K0802138-11)~~
关键词 多类分类 解析中心 版本空间 泛化误差 上界 bound multi-class classification analytical center version space generalization error upper
  • 相关文献

参考文献11

  • 1Shen Minghua, Xiao Huaitie, Fu Qiang. A multi-class classifying algorithm based on nonlinear dimensionality reduction and support vector machines [C] //Proc of the SPIE. San Jose: SPIE, 2007:678-829.
  • 2Jelinek F. Statistical Methods for Speech Recognition[M]. Cambridge, MA.. MIT Press, 1998.
  • 3Liu Yi. Zheng Yuan F. One-against all multi class classification using reliability measures [C] //Proc of the IEEE lnt Joint Conf on Neural Networks. Piscataway, NJ: IEEE Express, 2005:849-854.
  • 4Harris, Christopher K Schmidtler, Mauritius A R. Effective multi-class support vector machine classification: United States, 7386527 [P]. 2006.
  • 5Ofer Dekel, Yoram Singer. Multiclass learning by probabilistic embeddings [J]. Advances in Neural Information Processing Systems, 2002, 15 : 945-952.
  • 6Erin J Bredensteiner, Kristin P Bennett. Multicategory classification by support vector machines [OL].[1999-05-10]. http://mpa, ire. it/biblio]papers[bredensteiner99multicategory, pdf.
  • 7Smola A, Bartlett P, SchOlkopf B, et al. Advances in Large Margin Classifiers [M]. Cambridge, MA, MIT Press, 2000.
  • 8Trafalis T B, Malysche A M. An analytic center machine [J]. Machine Learning, 2002, 46(113): 203-223.
  • 9曾凡仔,岳建海,裘正定.DRC-ACM:一种精确的基于解析中心的分类器[J].计算机研究与发展,2004,41(5):802-806. 被引量:3
  • 10曾凡仔,裘正定.一种基于可行域解析中心的多类分类算法[J].复旦学报(自然科学版),2004,43(5):773-776. 被引量:2

二级参考文献14

  • 1Lee D,Seung H. Unsupervised learning by convex and conic coding[J].Advances in Neural Information Processing Systems, 1997,9:515-521.
  • 2Jelinek F. Statistical methods for speech recognition[M]. Cambridge, Massachusetts: The MIT Press, 1998.
  • 3Dekel O, Singer Y. Multiclass learning by probabilistic embeddings[J]. Advances in Neural Information Processing Systems,2002,15:945-952.
  • 4Allwein E, Schapire R , Singer Y. Reducing multiclass to binary: A unifying approach for margin classifiers[C].In: Langley P,eds. Proc 17th International Conf on Machine Learning[C]. San Francisco, CA:Morgan Kaufmann Publishers Inc, 2000.
  • 5Bredensteiner E J, Bennett K P. Multicategory classification by support vector Machines[EB/OL]. http://mpa.itc.it/biblio/papers/bredensteiner99multicategory.pdf.2004-02-05.
  • 6Smola A. Advances in large margin classifiers [M]. Cambridge, Massachusetts:The MIT Press,2000.
  • 7Trafalis T B, Malysche A M. An analytic center machine[J]. Machine Learning,2002,46(1/3): 203-223.
  • 8B Scho1kopf,C J C Burges,A J Smola.Advances in Kernel Methods:Support Vector Learning.Cambridge,Massachusetts:The MIT Press,1999
  • 9A Smola,P Bartlett,B Scholkopf et al.Advances in Large Margin Classifiers.Cambridge,Massachusetts:The MIT Press,2000
  • 10V Vapnik.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部