摘要
讨论了n阶非线性微分方程y(n)=f(t,y,y′,…,y(n-1)满足边界条件y(n-3)(α)+λ0y(n-2)(α)=λ1,y(n-1)(β)=λn-1,y(γ)=λn,n≥3,y(j)(β)=λj+2(j=0,1,…,n-4),n>3或y(n-2)(α)+λ0y(n-1)(α)=λ1,y(j)(β)=λj+2(j=0,1,…,n-3),y(γ)=λn的边值问题解的存在唯一性,其中α,β,γ及λi(i=0,1,…,n)均为实数。通篇假设函数f(t,y1,y2,…,yn)是区域[α,γ]×Rn上的连续函数。
お? In this Paper,the authors discuss the existence-uniqueness of solutions of boundary value problems for nth-order nonlinear differential equation y(n)=f(t,y,y′,…,y(n-1))with boundary condition y(n-3)(α)+λ0y(n-2)(α)=λ1,y(n-1)(β)=λn-1,y(γ)=λn,n≥3,y(j)(β)=λj+2(j=0,1,…,n-4),n>3.or y(n-2)(α)+λ0y(n-1)(α)=λ1,y(j)(β)=λj+2(j=0,1,…,n-3),y(γ)=λn.where α,β,γ and λi(i=0,1,…,n) are reals,It is assumed throughout this paper that the function f(t,y1,y2,…,yn) is a continuous function on the domain×Rn.
出处
《东北电力学院学报》
1998年第2期39-43,共5页
Journal of Northeast China Institute of Electric Power Engineering
关键词
非线性微分方程
边值问题
存在唯一性
解
nth-order nonlinear differential equation,boundary value problem,existence-uniqueness of solutions