摘要
在AffineToda场论中,研究了(I)部分得到的三种运动积分生成函数之间的联系,并求出一些经典可积边界条件。计算了准周期性边界条件下ZMS模型的无穷多运动积分;求出了ZMS模型在不相关边界下的经典可积边界条件与边界K+矩阵,并证实在此条件下确实存在一组无穷多运动积分、且其中的一个正是体系的哈密顿量,因而该系统是完全可积的。
In Affine Toda field theory, links among three generating functions for integrals of motion derived from P. (Ⅰ) are studied, and some classically integrable boundary conditions are obtained. An infinite number of integrals of motion are calculated in ZMS model with quasi-periodic condition. We find the classically integrable boundary conditions and K± matrices of ZMS model with independent boundary conditions on each end. It is identified that an infinite number of integrals of motion does exist and one of them is the Hamiltonian, so this system is completely integrable.
出处
《高能物理与核物理》
CSCD
北大核心
1998年第6期507-521,共15页
High Energy Physics and Nuclear Physics
基金
国家自然科学基金
关键词
无穷多运动积分
经典可积
边界条件
ZMS模型
an infinite number of integrals of motion, classically integrable boundary conditions, Affine Toda field theory, ZMS model