期刊文献+

一类非线性抛物型方程的有限差分格式 被引量:1

A Difference Scheme for a Kind of Non-linear Parabolic Equation
下载PDF
导出
摘要 对一类非线性抛物型方程初边值问题建立了一个二阶差分格式,证明了差分格式解的存在唯一性、关于初值的无条件稳定性和在L∞范数下,关于时间步长和空间步长的二阶收敛性,最后给出的数值算例验证了理论结果。 In this study, we construct a finite difference scheme for a kind of non-linear parabolic equation. It is proved that the scheme is uniquely solvable, unconditionally stable and second order convergent in L∞ norm. Numerical results demonstrate the theoretical results.
出处 《青岛农业大学学报(自然科学版)》 2009年第2期167-169,共3页 Journal of Qingdao Agricultural University(Natural Science)
关键词 非线性抛物型方程 有限差分格式 收敛性 稳定性 non-linear parabolic equation finite difference scheme convergence stability
  • 相关文献

参考文献5

  • 1Daiz J I, Ramos.AM. Numerical experiments regarding the distributed control of semilinear parabolic problems [ J ]. Comput. Math. Appl. , 2004,48 : 1575 - 1556.
  • 2Yuan guangwei, Shen longjun, Zhou yulin. Unconditional stability of parallel alternating difference schemes for semilinear parabolic systems[ J]. Appl. Math. Comput. ,2001,117:267 - 283.
  • 3Takanori Ide, Masami Okada. Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method [ J ]. J. Comput. Appl. Math. ,2006,194 ( 2 ) :425 - 459.
  • 4吴宏伟.分布控制中一类半线性抛物方程的差分格式[J].应用数学,2006,19(4):827-834. 被引量:7
  • 5吴宏伟.一类半线性抛物方程的差分格式及收敛性和稳定性[J].工程数学学报,2008,25(3):551-554. 被引量:12

二级参考文献11

  • 1孙志忠.解拟线性抛物方程的一类二阶差分格式[J].计算数学,1994,16(4):347-361. 被引量:6
  • 2Diaz J I, Ramos A M. Numerical experiments regarding the distributed control of semilinear parabolic problems[J]. Comput. Math. Appl. , 2004,48:1575-1586.
  • 3Yuan guangwei, Shen longujun, Zhou yulin. Unconditional stability of parallel alternating difference schemes for semilinear parabolic systems[J]. Appl. Math. Comput. , 2001,117 : 267-283.
  • 4Takanori Ide, Masami Okada. Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method[J]. J. Comput. App. Math. ,2006.
  • 5孙志忠.偏微分方程数值解[M].北京:科学出版社.2004.
  • 6Hsu Sze-Bi, Hwang Tzy-Wei, Kuang Yang. A ratio dependent food chain model and its applications to biological control[J]. Math Biosci, 2003, 181:55-83
  • 7Morgan Jeff. Boundedness and decay result for reaction-diffusion systems[J]. SIAM J Math Anal, 1990, 21(5): 1171-1189
  • 8Diaz J I, Ramos A M. Numerical experiments regarding the distributed control of semilinear parabolic problems[J]. Comput Math Appl, 2004, (48): 1575-1586
  • 9Yuan Guang-wei, Shen Long-jun, Zhou Yu-lin. Unconditional stablility of parallel allernating difference schemes for semilinear parabolic systen]s[J]. Appl Math Comput, 2001, 117:267-283
  • 10Voss D A, Khaliq A Q M. A linearly implicit predictor-correct method for reaction-diffusion equations[J]. Computers Math Applic, 1999, 38:207-216

共引文献16

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部