期刊文献+

活性艳蓝X-BR降解菌的筛选 被引量:2

Screening of Bacteria Degrading Reactive Brilliant Blue X-BR
下载PDF
导出
摘要 从某印染厂废水排放出口的污泥中分离到一株活性艳蓝X—BR染料高效降解菌LPY68—14,经生理生化鉴定,该菌为埃希氏菌(Escherichia sp.)。研究了影响菌株LPY68—14降解效果的因素,实验结果表明:在缺氧、质量分数为0.2%葡萄糖为外加碳源、温度37℃、接种量4mL、pH7的最佳条件下,质量浓度为30mg/L的活性艳蓝X—BR经菌株LPY68—14处理24h后的降解率可达80%;当活性艳蓝X—BR质量浓度为100—400mg/L时,该菌处理48h后的降解率可稳定在70%左右。 A strain of bacterium which can effectively degrade reactive brilliant blue X-BR, LPY68-14 was isolated from the sludge in the wastewater discharge port of a dying plant. According to its physiological and biochemical characteristics, the strain LPY68-14 is Escherichia sp.. The factors affecting the degradation were studied. The experimental results show that: Under the optimum conditions of anoxic environment, using glucose with 0. 2% of mass fraction as external carbon source, temperature 37 ℃, inoculum dosage 4 mL, and pH 7, the degradation rate of reactive brilliant blue X-BR with 30 mg/L of mass concentration can come up to 80% after 24 h of treatment by LPY68-14; When the mass concentration of reactive brilliant blue X-BR is 100 -400 mg/L, its degradation rate can be kept at about 70% after 48 h of treatment.
出处 《化工环保》 CAS CSCD 北大核心 2009年第3期216-219,共4页 Environmental Protection of Chemical Industry
关键词 印染废水 降解 菌种筛选 活性艳蓝X—BR 废水处理 dyeing wastewater degradation strain screening reactive brilliant blue X-BR wastewater treatment
  • 相关文献

参考文献18

二级参考文献111

共引文献127

同被引文献31

  • 1张辉,李培军,胡筱敏,王新.亚硝化细菌的筛选及培养条件的研究[J].化工环保,2006,26(5):366-369. 被引量:22
  • 2赵彦琦,杨英.河道污染质垂向迁移对地下水影响的研究[J].环境污染与防治,2007,29(2):110-114. 被引量:10
  • 3Jeyasingh J,Philip L. Bioremediation of chromium contami- nated soil : optimization of operating parameters under laboratory conditions. J Hazard Mater,2005 ,B118 : 113 - 116.
  • 4Shaili Srivastava, Indu Shekhar Thakurb. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol Biochem,2006,38(7) : 1 904 - 1 911.
  • 5DOnmez G, KoCberber N. Bioaccumulation of hexavalent chromium by enriched microbial cultures obtained from molasses and NaCl containing media. Process Biochem, 2005,40 : 2 493 - 2 498.
  • 6Gong P, Siciliano S D, Srivastava S, et al. Assessment of pollution-induced microbial community tolerance to heavy metals in soil using ammonia-oxidizing bacteria and biolog assay. Human Ecolog Risk Assess, 2002, 8 (5) : 1 067-1 081.
  • 7Ishibashi Y,Cervantes C, Silver S. Chromium reduction in Pseudomonas putida. Appl Environ Microbiol, 1990, 56 (7): 2268-2270.
  • 8McLean J,Beveridge T J. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol, 2001,67 ( 3 ) :1 076- 1 084.
  • 9Pal A,Dutta S,Paul A K. Reduction of hexavalent chromium by cell-free extract of bacillus sphaericus and 303 isolated from serpentine soil. Curr Microbiol, 2005, 51 (5). 327-330.
  • 10Sheng Hai, Wang Yitian. Characterization of enzymatic reduction of hexavalent chromium by escherichia coli ATCC 33456. Appl Environ Microbiol, 1993,59 ( 11 ) : 3 771 - 3 777.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部