期刊文献+

2D—FDA和ProximalSVM在人脸识别上的联合应用

2D-FDA Plus PSVM Using in Face Recognition
下载PDF
导出
摘要 对人脸图像进行二维Fisher鉴别分析(2D—FDA)的特称抽取与最临近支持向量机(ProximalSVM)的分类进行组合。首先把人脸图像按测试样本和训练样本进行划分。对训练样本进行2D—FDA特征抽取,得到抽取不同特征数目的具有最大鉴别信息的特征向量。然后再把此特征向量与测试样本相结合,用最简单的支持向量机进行分类,得到比用最小欧氏距离方法更高的识别效率,从而说明这两种方法的组合在人脸识别应用中发挥了各自的优点。 The paper gives a method that combined Two Dimensional Fisher Discrimant analysis (2D-FDA) and Proximal SVM in face recognition. Firstly we divide the train sample from the whole, and the rest is the test sample. Then we extract most useful features using 2D-FDA method. After that, we project both train sample and test sample into the extractive feature space. Finally we classify the test sample used the Proxmal SVM method. The higher recogniation rate shows that the combined method has a better classification performances.
作者 王晓辉 WANG Xiao-hui (HanShan Teachers College, Department of Mathematics and Information Technology, Guangdong, Chaozhou 521041, China)
出处 《电脑知识与技术》 2009年第5期3513-3515,共3页 Computer Knowledge and Technology
关键词 二维Fisher鉴别分析 最临近支持向量机 特征抽取 人脸识别 2D-FDA proximal SVM feature extraction face recogniton
  • 相关文献

参考文献2

二级参考文献16

  • 1L Bottou,C Cortes,J Denker et al.Comparison of classifier methods:A case study in handwriting digit recognition[C].In:International Conference on Pattern Recognition,IEEE Computer Society Press,1994:77~87
  • 2U Kreβel.Pairwise classification and support vector machines[C].In:B Sch(o)lkopf,C J C Burges,A J Smola eds.Advances in Kernel MethodsSupport Vector Learning,Cambridge,MA:MIT Press,1999:255~268
  • 3J C Platt,N Cristianini,J Shawe-Taylor.Large margin DAG's for multiclass classification[C].In:Advances in Neural Information Processing Systems,Cambridge,MA:MIT Press,2000;12:547~553
  • 4C W Hsu,C J Lin.A Comparison of Methods for Multiclass Support Vector Machines[J].IEEE Transactions on Neural Networks,2002;13(2):415~425
  • 5G Fung,O L Mangasarian.Multicategory Proximal Support Vector Machine Classifiers[J].Machine Learning,2005 ;59(1-2):77~97
  • 6Y Xu,D Zhang,Z Jin et al.A fast kernel-based nonlinear discriminant analysis for multi-class problems[J].Pattern Recognition,2006;39(6):1026~1033
  • 7X Y Jing,D Zhang,Z Jin.UODV:improved algorithm and generalized theory[J].Pattern Recognition,2003; 36 (11):2593~2602
  • 8T Evgeniou,M Pontil,T Poggio.Regularization Networks and Support Vector Machines[J].Advances in Computational Math,2000; (13):1~50
  • 9C J C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998 ;2(2):121~167
  • 10Glenn Fung,Olvi L Mangasarian.Proximal Support Vector Machine Classifiers[C].In:Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Francisco,CA,USA,2001:77~86

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部