期刊文献+

基于滤波器组的MCAF噪声对消语音增强

MCAF Noise Cancellation Speech Enhancement Based on Filter Banks
下载PDF
导出
摘要 在自适应噪声对消语音增强系统中,为了更好地加快自适应收敛速度,又不增加系统的计算复杂度,同时达到较好的增强效果,提出基于滤波器组的多通道自适应滤波(MCAF)语音增强;给出分析滤波器组与综合滤波器组的原型滤波器设计的具体方法。自适应滤波部分采用经典的LMS算法,同时结合多通道自适应滤波(MCAF),实现对含噪语音的处理,以达到增强效果。实验结果表明,相对于传统的子带LMS算法,基于滤波器组的多通道自适应滤波具有更好的性能,且加快了计算速度。 In adaptive noise cancellation speech enhancement system, in order to better speed up the convergence rate adaptive,not increase the complexity of the system,and to better enhance the effect,methods based on filter banks and the Multichannel Adaptive Filtering (MCAF) speech enhancement are proposed, the specific design methods of analysis of filters and filter group prototype filter are given. The adaptive filtering part uses the classic LMS algorithm combination of Multi -channel Adaptive Filter (MCAF), realization of the noise to deal with to enhance the effect. The results show that, compared to the traditional sub - band LMS algorithm, based on the multi - channel filter banks adaptive filter has better performance, and accelerate pace of the calculation.
出处 《现代电子技术》 2009年第12期156-158,162,共4页 Modern Electronics Technique
关键词 滤波器组 多通道自适应滤波 语音增强 原型滤波器 filter banks multi - channel adaptive filter speech enhancement prototype filter
  • 相关文献

参考文献11

  • 1Papoulis E V Stathaki T. New Structures for Adaptive Filtering in Subbands Based on Transmultiplexers [J]. IEEE International Acoustics, Speech and Signal Processing,2002:1 557- 1 560.
  • 2Hu Wen, Farooq O, Datta S. Wavelet - based Sub - space Features for Face Recognition[J]. IEEE Image and Signal Processing, 2008 :426 - 430.
  • 3Allred D J, Heejong Yoo Krishnan, Huang V, et al. LMS Adaptive Filters Using Distributed Arithmetic for High Throughput[J].IEEE Trans. 2005 : 1 327 - 1 337.
  • 4Griesbach J D, Lightner M, Etter D M. Basis Expansion Adaptive Filters for Time - varying System Identification[J].IEEE Signals, Systems and Computers, 2000:1 489-1 493.
  • 5Deng G. Partial Update and Sparse Adaptive Filters[J].IET Signal Processing, 2007 : 9 - 17.
  • 6Patnaik S, Patnaik Y, Upadhya A. RLS Algorithm - based Sub - band Decomposition for Low Memory Multimedia Applications[J]. Advanced Communication Technology, 2006:20 - 22.
  • 7Larson L O, de Haan J M, Claesson I. A New Subband Weight Transform for Delayless Subband Adaptive Filtering Structures [J]. IEEE Digital Signal Processing. 2002: 201 -206.
  • 8Ma X J,Xie X M,Shi G M,etal. A Simple Design of M - channel FIR Wavelet - like Filter Bank[J]. IEEE Intelligent Signal Processing and Communication Systems, 2007: 474 -477.
  • 9Xu Lijun, Han Jun. Cancellation of Harmonic Interference Using Multi--Rate Signal Processing Techniques[A]. IEEE Instrumentation and Measurement Technology Conference[C]. 2006:1 392 -1 396.
  • 10Wilbur M R,Davidson T N,Reilly J P. Efficient Designing of Oversampled NPR GDFT Filter Banks[J].IEEE Trans. on Signal Processing, 2004,52 (7) : 1 962 - 1 974.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部