期刊文献+

扩展的Tanh函数展开法与广义KdV方程的精确解 被引量:3

Extended tanh-fuction Method and Explict Exact Solutions for Nonlinear KdV Equation
下载PDF
导出
摘要 介绍了扩展的双曲函数展开法,利用该方法导出了广义的KdV方程的用Tanh函数表示的新的精确解,由此进一步推广了此方法的应用范围。 The exact solutions, which are expressed by tanh-fuction,to the KdV equation by using a extended tanh-fuction method.
作者 王三五 于鹏
出处 《科学技术与工程》 2009年第11期3019-3020,共2页 Science Technology and Engineering
基金 陕西科技大学自然科学基金项目(ZX08-26)资助
关键词 扩展的双曲函数展开法 广义KDV方程 精确解 extended tanh method generalized KdV equation exact solutions
  • 相关文献

参考文献4

  • 1Fan E G. Extend tanh-function method and its applications to nonlinear equations. Phys Lett A, 2000 ;277 ;212-8
  • 2Wang Mingling. Exact solutions for a compound KdV -Burgers equation. Physics Letters A, 1996 ;213:279-287
  • 3Yusu foglu E, Bekir A, Turkey K. On the extend Tanh method applications of nonlinear equations. International Journal of Nonoliear Science,2007 ; 4(1) :10-16
  • 4张金良,李向正,王明亮.两个非线性耦合方程组的复tanh函数解[J].工程数学学报,2005,22(4):725-728. 被引量:8

二级参考文献16

  • 1Wang Ming-liang. Solitary wave solutions for variant Boussinesq equations[J]. Phys Lett, 1995;A199:169-172.
  • 2Zhang Jin-Liang, Wang Yue-Ming, Wang Ming-Liang, Fang Zong-De. New application of the homogeneous balance principle[J]. Chinese Physics, 2003;12:245-250.
  • 3Zhou Yu-bin, Wang Ming-liang, Wang Yue-ming. Periodic wave solutions to a coupled KdV equations with variable coefficients[J]. Phys Lett, 2003;A308:31-36.
  • 4Zhang Jin-Liang, Ren Dong-Feng, Wang Ming-Liang et al. The periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation[J]. Chin Phys, 2003;12:825-830.
  • 5Khuri S A. A complex tanh-function method applied to nonlinear equations of Schrodinger type[J]. Chaos Solitons and Fractals, 2004;20:1037-1040.
  • 6Faddeev L P, Takhtajan L A. Formulation of Nonlinear NS Model, Hamiltonian Methods in The Theory of Solutions[M]. Berlin: Springer, 1987.
  • 7Zakharov V E. The Inverse Scattering Methods in Solutions[M]. Berlin: Springer, 1980.
  • 8Myrzakulov R, Bliev N K, Boyzyky A B. Reports NAS RKS, 1996.
  • 9Radha R, Lakshmanan M. Singularity structre analysis and bilinear form of a (2q-1)-dimensional nonlinear NLS equation[J]. Inverse Problem, 1994;10:L29-32.
  • 10Zhao X Q, Lu J F, Lu K Y. The infinite-dimensional lie algebraic and integrability of a nonlinear Schrodinger equation in (2+1) dimension[J]. J Nankai Univ, 2002;35:74-77.

共引文献7

同被引文献25

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部