期刊文献+

基于SOFM网络的改进K-均值聚类算法 被引量:3

Improved K-Means Clustering Algorithm Based on SOFM
下载PDF
导出
摘要 针对传统的K-均值聚类算法中随机选取初始聚类中心的缺陷,提出一种改进的K-均值聚类算法,利用自组织特征映射网络(SOFM)自动获得初始聚类中心。实验结果表明,改进的K-均值聚类算法能有效改善聚类性能,提高聚类的准确率。 In view of the shortcomings of traditional K-means algorithm in not being able to select the initial clustering center automatically, a new improved K-means clustering algorithm is proposed, which obtains the initial clustering center by using Self- Organizing Feature Map (SOFM) automatically. Experimental results demonstrate that the improved K-means algorithm can improve the clustering performance effectively and enhance the clustering accuracy.
出处 《科技导报》 CAS CSCD 北大核心 2009年第10期61-63,共3页 Science & Technology Review
基金 安徽省高校省级自然科学基金项目(KJ2007B158)
关键词 K-均值聚类 自组织特征映射网络 聚类中心 K-means clustering self-organizing feature map clustering center
  • 相关文献

参考文献6

  • 1Kumiawan A,Benech N,Tao Y F.Towards high-dimensional clustering[J].COMP,1999(11):I-2.
  • 2Pena J,Lozano J,Larranaga P.An empirical comparison of four initialization methods for the K-Means algorithm[J].Pattern Recognition Letters,1999,20(10):1027-1040.
  • 3Kohonen T.The self-organization map[J].Proceedings of the IEEE,1990,78(9):1464-1480.
  • 4Alahakoon D,Halgamuge S K,Srinivasan B.Dynamic self-organizing maps with controlled growth for knowledge discovery[J].Neural Networks,2000,11(3):601-614.
  • 5傅忠谦,王新跃,周佩玲,彭虎,陶小丽.基于Kohonen和BP神经网络的文本学习算法[J].计算机工程与应用,2001,37(1):76-78. 被引量:6
  • 6章文军,许禄.自组织特征映射神经网络——用于茶叶分类[J].计算机与应用化学,2000,17(1):85-87. 被引量:6

二级参考文献3

共引文献9

同被引文献27

  • 1张春雷.实践呼唤与理性思考——评《中国国家能力报告》[J].中国图书评论,1994,17(4):17-20. 被引量:2
  • 2陈勇.新区域主义评析[J].财经论丛(浙江财经学院学报),2005(6):54-60. 被引量:8
  • 3李朝荣,张鹰,张安妮.基于PSO算法的神经网络集成入侵检测系统[J].计算机工程,2007,33(14):123-124. 被引量:7
  • 4韩家炜.数据挖掘:概念与技术[M].北京:机械工业出版社,2005.
  • 5Kim K J,Han I.Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index[J].Expert Systems with Applications,2000,19(2):125-132.
  • 6Quah T S,Srinivasan B.Improving returns on stock investment through neural network selection[J].Expert Systems with Applications,1999,17(4):295-301.
  • 7Roman J,Jameel A.Backpropagation and recurrent neural networks in financial analysis of multiple stock market returns[C] //In IEEE system sciences proceedings of the twenty-ninth Hawaii international conference.Hawaii,USA,1996(2):454-460.
  • 8Cao L.Support vector machines experts for time series forecasting[J].Neurocomputing,2003,51:321-339.
  • 9Huang W,Nakamori Y,Wang S Y.Forecasting stock market movement direction with support vector machine[J].Computers and Operations Research,2005,32(10):2513-2522.
  • 10Tay F E H,Cao L J.Application of support vector machines in financial time series forecasting[J].Omega,2001,9(4):309-317.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部