期刊文献+

Laplace变换数值反演Crump方法的参数选择 被引量:1

Parameters Determination in Numerical Inversion of Laplace Transforms of Crump Methods
下载PDF
导出
摘要 针对Laplace变换数值反演Crump方法的参数选择受先验知识的限制,分析Crump方法的误差趋势,选择使得总误差取得最小值所对应的衰减指数;基于最大模原理选择截断项数,使得计算结果满足规定的相对误差。算例验证表明:选择的参数使得Crump方法在自变量的大范围内适用。 The numerical inversion of Laplace transforms of Crump methods needs prior information to determine the correlative parametess. The error trend of Crump methed is analyzed, and attenuation exponent is selected with the minimum total error. The maximum modulus principle is used to determination truncation term number with the approximate result meeting the set relation accuracy. Thus the results with the chosen parameters are considerable accuracy over a wide range of values of the independent variable.
出处 《计算技术与自动化》 2009年第2期77-80,共4页 Computing Technology and Automation
关键词 数值积分 LAPLACE逆变换 最大模原理 矢量匹配 numerical integration inversion of Laplace transform the maximum modulus principle vector fitting
  • 相关文献

参考文献6

  • 1K.S.Crump.Numerical inversion of Laplace transforms using Fourier series approximation[J].ACM Trans.Math.Soft.,23:89-96,1976.
  • 2Duffy.On the numerical inversion of Laplace transforms:Comparison of three new methods on characteristic problems from Applications[J].ACM Trans.Math.Soft.,19:333-359,1993.
  • 3FuSen F.Lin.Numerical Inversion of Laplace Transforms By the Trapezoidal-Type Methods[D].Oregon State:Oregon State University,2003.
  • 4H.Dubner and J.Abate.Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform[J].J.ACM,15:115-123,1968.
  • 5James Ward Brown and Ruel V.Churchill.Complex Variables and Applications,Seventh Edition[M].Beijing:China Machine Press,2005.
  • 6B.Gustavsen and Adam Semlyen.Rational Approximation of Frequency Domain Responses by Vector Fitting[C].IEEE Transactions on Power Delivery,1999,14(3):1052-1061.

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部