摘要
针对Laplace变换数值反演Crump方法的参数选择受先验知识的限制,分析Crump方法的误差趋势,选择使得总误差取得最小值所对应的衰减指数;基于最大模原理选择截断项数,使得计算结果满足规定的相对误差。算例验证表明:选择的参数使得Crump方法在自变量的大范围内适用。
The numerical inversion of Laplace transforms of Crump methods needs prior information to determine the correlative parametess. The error trend of Crump methed is analyzed, and attenuation exponent is selected with the minimum total error. The maximum modulus principle is used to determination truncation term number with the approximate result meeting the set relation accuracy. Thus the results with the chosen parameters are considerable accuracy over a wide range of values of the independent variable.
出处
《计算技术与自动化》
2009年第2期77-80,共4页
Computing Technology and Automation
关键词
数值积分
LAPLACE逆变换
最大模原理
矢量匹配
numerical integration
inversion of Laplace transform
the maximum modulus principle
vector fitting