期刊文献+

集成学习算法在不平衡分类中的应用研究

Using Ensemble Learning Strategy to Handle Class Imbalance Problems
下载PDF
导出
摘要 提出一种基于训练集分解的不平衡分类算法,该算法使用能输出后验概率的支持向量机作为分类器,使用基于测度层次信息源合并规则实现分类器的集成。在4个不同领域的不平衡数据集上的仿真实验表明:该算法有效提高分类器对正类样本的正确率,同时尽量减少对负类样本的误判。实验结果验证集成学习算法处理不平衡分类问题的有效性。 Based on the strategy of partitioning training set, an algorithm was proposed to handle class imbalance problems. Support vector machines which can output posterior probability were used as base classifiers and then combined by a rule of information fusion at measure - level. Experimental results on four problems in different fields show that the proposed algorithm cart get higher classification accuracy to positive class while does its best to decrease the classification error to negative class.
出处 《计算技术与自动化》 2009年第2期103-106,共4页 Computing Technology and Automation
基金 湖南省博士后科研资助专项计划项目(2008RS4005) 湖南省教育科学十一五规划课题(XJK08BXJ001)
关键词 机器学习 类不平衡 集成学习 评测标准 machine learning class imbalance ensemble learning evaluation matrices
  • 相关文献

参考文献15

  • 1Choe W,Ersoy O K,Bina M.Neural network schemes for detecting rare events in human genomic DNA[J].Bioinformatics,2000,16(12):1062-1072.
  • 2Kubat M,Holte B C,Matwin S.Machine learning for the detection of oil spills in satellite radar images[J].Machine Learning,1998,30:195-215.
  • 3Lewis,D,Gale W.Training text classifiers by uncertainty sampling[C]//Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Dublin:Ireland,1994:3-12.
  • 4Chan P K,Stolfo S J.Toward scalable learning with non-uniform class and cost distributions:a case study in credit card fraud detection[C]//Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining,New York:AAAI Press,1998:164-168.
  • 5Plant C,Bohm C,Bernhard Tilg,Baumgartner C.Enhancing instance-based classification with local density:a new algorithm for classifying unbalanced biomedical data[J].Bioinformatics,2006,22(8):981-988.
  • 6叶志飞,文益民,吕宝粮.不平衡分类问题研究综述[J].智能系统学报,2009,4(2):148-156. 被引量:72
  • 7Estabrooks A,Taeho J,Japkowicz N.A multiple resampling method for learning from imbalanced data sets[J].Computational Intelligence,2004,20(1),18-36.
  • 8Drummond C,Holte R C.C4.5,class imbalance,and cost sensitivity:why under-sampling beats over-sampling[C]//Proceedings of the Workshop on Learning from Imbalanced Data Sets II,International Conference on Machine Learning,Washington:AAAI Press,2003.
  • 9Yan R,Liu Y,Jin R,et al.On predicting rare classes with SVM ensembles in scene classification[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing,2003:21-24.
  • 10Lu B L,Ito M.Task decomposition and module combination based on class relations:a modular neural network for pattern classification[J].IEEE Trans.Neural Networks 1999,10(5):1244-1256.

二级参考文献2

  • 1Foster Provost,Tom Fawcett. Robust Classification for Imprecise Environments[J] 2001,Machine Learning(3):203~231
  • 2Miroslav Kubat,Robert C. Holte,Stan Matwin. Machine Learning for the Detection of Oil Spills in Satellite Radar Images[J] 1998,Machine Learning(2-3):195~215

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部