期刊文献+

基于小波能量谱与支持向量机的滚动轴承损伤等级检测

Fault Levels Identification for Rolling Bearing Based on Wavelet Power Spectrum and SVM
下载PDF
导出
摘要 对滚动轴承的故障类型识别已有很多研究,但很少涉及到其故障等级,即损伤程度的检测与识别。文中采用小波包多层分解的方法,提取滚动轴承的振动信号的能量谱,经归一化后,结合RBF为核函数的支持向量机,对美国Case Western Reserve大学的轴承数据中心的滚动轴承规范数据集进行研究测试,取得很好的实验效果。 Though the faults of rolling bears were studied much more, the fault levels for rolling bears was rarely researched. This paper proposed a method of fault levels identification for rolling bearing based on wavelet power spectrum and support vector machine (SVM). And the method applied to the data of Case Western Reserve University Bearing Data Center, results showed that this method performed well.
出处 《机械工程师》 2009年第6期70-72,共3页 Mechanical Engineer
关键词 滚动轴承 损伤等级 小波能量谱 支持向量机 rolling bears fault levels wavelet power spectrum support vector machine
  • 相关文献

参考文献8

二级参考文献18

  • 1万书亭,李和明,李永刚.发电机绕组故障时振动的关联维数分析及诊断[J].振动.测试与诊断,2005,25(3):210-213. 被引量:4
  • 2张韵辉,赵宇红,吕震中.基于混沌理论的再热汽温神经网络模型[J].自动化仪表,2006,27(2):6-10. 被引量:1
  • 3张文明,李莉,申焱华,王英,王卫刚.滚动轴承故障诊断中的分形[J].北京科技大学学报,1996,18(3):215-219. 被引量:18
  • 4陈克兴,设备状态监测与故障诊断技术,1991年
  • 5黄文虎.设备故障诊断原理、技术及应用[M].北京:科学出版社,1999..
  • 6Huang N E,et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A,1998,454:903-995.
  • 7Christopher P Silva,Albea M Young.Introduction to Choas-Based Communications & Signal Processing[J].IEEE,2000.
  • 8J D Jiang,Chen J,Qu L S,et al.The application of correlation dimension in gearbox condition monitoring[J].Journal of Sound and Vibration,1999,223(4):17.
  • 9C Craig,Neilson R D,Penman J,et al.The use of correlation dimension in condition monitoring of systems with clearance[J].Journal of Sound and Vibration,2000,231(1):16.
  • 10Changting Wang,Gao R X.Sensor Placement Strategy for In-Situ Bearing Defect Detection[J].IEEE,2000.

共引文献2420

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部