期刊文献+

纳米碳管增强复合材料界面特性对力学性能影响的数值分析 被引量:2

Numerical analysis of the influence of interfacial characteristics of nano-tube reinforced composites on their mechanical properties
下载PDF
导出
摘要 假设纳米碳管与树脂基体之间存在一薄层界面,以纳米碳管、界面和基体组成的三层柱体复合材料特征体积单元为研究对象,采用纳-微观均质化理论方法分析界面的模量、体积比、排列方式等的变化对纳米碳管增强复合材料力学性能的影响,所得结果与多相经典平均Mori-Tanaka法进行比较。结果清晰显示了界面模量、体积比的变化对纳米碳管增强复合材料力学性能的影响,有效地区分了含界面纳米碳管在不同排列方式下的力学性能,为纳米碳管增强复合材料力学性能的设计和优化提供计算依据。 It is assumed that there is a thin interface between nano-tube and polymer matrix in nanotube reinforced composites. With the multi-layer composite cylinders representative volume element as the object of research, the global-local homogenization method is applied to analyze the influence of interfacial modulus, volume fraction and array method on the mechanical properties of nano-tube reinforced composites, and the results are compared with those from the multi-phase classical average Mori-Tanaka method. It is found that the interfaeial parameters have obvious influence on the effective elastic modulus of nano-tube composites, and its functionalization is significant in improving the properties of nano-tube composites. At the same time, the global-local homogenization model is effective in describing the effect of interfacial modulus on mechanical properties of nano-tube composites.The conclusions given in the paper provide a basis for the design and optimization of nano-composites with excellent mechanical properties.
出处 《武汉科技大学学报》 CAS 2009年第3期279-283,共5页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(10772047/A020206) 国家教育部留学回国基金资助项目(2008890) 佛山市科技专项基金资助项目(2007055B)
关键词 纳米碳管增强复合材料 界面特性 均质化方法 力学性能 nano-tube reinforced composite interracial characteristic global-local homogenizationmethod mechanical property
  • 相关文献

参考文献18

  • 1Xie S S,Li W Z,Pan Z W,et al.Mechanical and physical properties on carbon nanotube[J].Journal of Physics and Chemistry of Solids,2000,61:1 153-1 158.
  • 2Luo D M,Wang W X,Yoshihiro Takao.Application of homogenization method on the evaluation and analysis of the effective stiffness for noncontinuous carbon nanotube/polymer composites[J].Polymer Composites,2007,9:688-695.
  • 3Piat R,Reznik B,Schnack E,et al.Modeling of effective material properties of pyrolytic carbon with different texture degrees by homogenization method[J].Composites Science and Technology,2004,64:2 015-2 020.
  • 4Behnam Ashrafi,Pascal Hubert.Modeling the elastic properties of carbon nanotube array/polymer composites[J].Composites Science and Technology,2006,66:387-396.
  • 5Mori T,Tanaka K.Average stress in matrix and average energy of materials with misfitting inclusion[J].Acta Metall,1973,21:571-574.
  • 6邸玉贤,计欣华,李林安,秦玉文,陈金龙.纳米金属材料宏观弹性模量的数值模拟研究[J].机械强度,2007,29(1):16-19. 被引量:10
  • 7Komanduri R,Chandrasekaran N,Raff L M.Molecular dynamics (MD) simulation uniaxial tension of some single-crystal cubic metals at nanolevel[J].International Journal of Mechanical Sciences,2001,43(10):2 237-2 260.
  • 8Buryachenko V A,Roy A,Lafdi K,et al.Multi-scale mechanics of nanocomposites including interface:experimental and numerical investigation[J].Composites Science and Technology,2005,65:2 435-2 465.
  • 9Gou J,Minaie B,Wang B,et al.Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites[J].Comput Mater Sci,2004,31:225-36.
  • 10Gray D Seidel,Dimitris C.Lagoudas.Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites[J].Mechanics of Materials,2006,38(8-10):884-907.

二级参考文献54

  • 1Jansson S. Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure. Int J Solids Structures, 1992, 29:2 181 - 2 200.
  • 2Hassani B, Hinton E. A review of homogenization and topology optimization Ⅱ-analytical and numerical solution of homogenization equations. Computers & Structures, 1998, 69:719 - 738.
  • 3Halpin J C. Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater, 1969,3:732 - 724.
  • 4Halpin J C, Kardos J L. The Halpin-Tsai equations: A review. Polym Eng Sci, 1976, 16:344 - 352.
  • 5Halpin J C. Primer on composite materials. New York: Technomic,1992.
  • 6Hermans J J. The elastic properties of fiber reinforced materials when the fibers are aligned. Proc Kon Ned Akad v Wetensch B.,1967,65:1 9.
  • 7Hill R. Theory of mechanical properties of fiber-strengthened materials:I Elastic behaviour. J Mech Phys Solids, 1964,12:199 - 212.
  • 8Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 1973, 21:571 - 574.
  • 9Weng G J. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int J Engng Sci, 1984, 22:845- 856.
  • 10Tandon G P, Weng G J. The effect of aspect ratio of inclusions on the elastic properties of undirectionally aligned composites. Polymer Composites,1984,5(4) :327 - 333.

共引文献72

同被引文献22

  • 1王国建,郭建龙,屈泽华.碳纳米管/环氧树脂复合材料力学性能影响因素的研究[J].玻璃钢/复合材料,2007(4):18-22. 被引量:19
  • 2刘明贤,郭宝春,贾德民.环氧树脂/碳纳米管纳米复合材料的制备与性能研究进展[J].塑料工业,2007,35(8):1-6. 被引量:9
  • 3Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
  • 4Chen X L, Liu Y J. Square representative volume elements for evaluating the effective material pro- perties of carbon nano-tube-based composites[J].Computational Materials Science, 2004, 29: 1-11.
  • 5Fisher F T, Bradshaw R D, Brinson L C. Fiber waviness in nanotube-reinforced polymer compos- ites-I: modulus predictions using effective nanotubeproperties[J]. Composites Science and Technology, 2003, 63:1 689-1 703.
  • 6Gao X L, Li K. A shear-lag model for carbon nanotubereinforced polymer composites [J]. International Journal of Solids and Structures, 2005 , 42 : 1649-1667.
  • 7Odegard G M, Gatesb T S, Wisea K E, et al. Constitutive modeling of nano-tube-reinforced polymercomposites[J]. Composites Science and Technology, 2003, 63: 1 671-1 687.
  • 8Luo D M, Wang W X, Takao Y. Application of homogenization method on the evaluation and analysis of the effective stiffness for noncontinuous car-bon nanotube/polymer composites[J]. Polymer Composites, 2007, 28(5): 688-695.
  • 9Xu X P, Needleman A. Numerical simulations of fast crack growth in brittle solid [J]. Journal of the Mechanics and Physics of Solids, 1994, 42:1 397- 1 434.
  • 10张娇霞,郑亚萍,白龙腾,许磊,宁荣昌.二乙烯三胺改性碳纳米管对环氧树脂纳米复合材料力学性能影响研究[J].中国胶粘剂,2008,17(1):4-7. 被引量:5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部