期刊文献+

一种新的基因表达数据聚类方法 被引量:3

New method for clustering gene expression data
下载PDF
导出
摘要 提出了一种基于样本间关系的新聚类方法,从基因表达数据中通过pearson相关系数获得样本间的关系,并用网络的方法表示这种关系,通过该网络的空间结构特征来提取样本间的关系特征,并在这种关系特征空间中进行样本的聚类.该方法能更好地揭示不同类样本间的差异性,具有聚类空间维数低而无需降维的特点.分别采用本方法与现有的聚类方法对真实的基因表达数据进行了聚类分析,实验结果说明该方法能获得更高的聚类正确率,且对于分布混杂的数据的聚类效果也较好. A new clustering method based on the relationship between patterns is proposed. The relationship between patterns is obtained from gene expression data through the pearson correlation coefficient, which is denoted by a network, the relation feature between patterns is extracted by discovering the structure feature of the network, and clustering is performed in the relation feature space. The proposed method uncovers the dissimilarity between patterns belonging to different classes more effectively, and the dimensionality of the clustering space is so low than there is no need to reduce dimensions. The comparison of the method with the conventional ones shows that the method can obtain a much higher clustering efficiency than other methods and it can lead to a better efficiency even for those data with promiscuous distribution.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第3期502-505,534,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60371044)
关键词 聚类 样本关系网络 结构特征 关系特征 clustering pattern relation network structure feature relation feature
  • 相关文献

参考文献10

  • 1Witten I H, Frank E. Data Mining: Pracitcal Machine Learning Tools and Techniques [M]. Sna Francisco: Morgan Kaufmann Publishers, 2005.
  • 2Golub T R, Slonim D K, Tamayo P, et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring [J]. Science, 1999, 286(5439): 531-537.
  • 3Karypis G, Han E H, Kumar V. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling[J]. Journal of Computer Using Dynamic Modeling, IEEE Computer, 1999, 32(8): 68-75.
  • 4Eisen M B, Spellman P T. Cluster Analysis and Display of Genome-wide Expression Ppatterns [J]. The National Academy of Science, 1998, 95(25) : 14863-14868.
  • 5Herwig R, Poustka A J. Large-scale Clustering of cDNA-fingerprinting Data [J]. The National Academy of Science, 1999, 9(11) : 1093-1105.
  • 6Kohonen T. The Self-Organizing Map [J]. Proc IEEE, 1990, 78(9): 1464-1480.
  • 7宫改云,毛用才,高新波,刘三阳.基于模糊c-均值聚类的微阵列基因表达数据分析[J].西安电子科技大学学报,2004,31(2):291-295. 被引量:8
  • 8Rougemont J, Hingamp P. DNA Microarray Data and Contextual Analysis of Correlation Graphs [J]. BMC Bioinformatics, 2003, 4 (1) : 15.
  • 9Qu Yi, Xu Shizhong. Supervised Cluster Analysis for Microarray Data Based on Multivariate Gaussian Mixture [J]. Bioinformatics, 2004, 20(12): 1905-1913.
  • 10Herrero J, Valencia A, Dopazo J. A Hierarchical Unsupervised Growing Neural Network for Clustering Gene Expression Patterns [J]. Bioinformatics, 2001, 17(2):126-136.

二级参考文献5

  • 1高新波 姬红兵.一种基于特征加权的模糊均值聚类算法[J].西安电子科技大学学报,2000,27:80-83.
  • 2Pan Wei, Lin Jizhen, Le C T. Model-Based Cluster Analysis of Microarray Genes Expression Data[ DB/OL]. http://www, biostat. umn.edu/-weip/paper, hind, 2001-02-07.
  • 3Eiaen M, Spellman P, Botstein D. Ouster Analysis and Display of C, enome-wide Expression Patterns[J]. Proc Nail Acad Sci USA,1998, 95(25): 14863-14868.
  • 4Tavazoie S, Hughes J D, Campbell M J, et al. Systematic Determination of Genetic Network Azchltecture[J]. Nat Genet, 1999, 22(3):281-285.
  • 5Tamayo P, Slonim D, Mesirov J, et al. Interpetlng Patterns of C.ene Expression with Self-organizing Maps: Methods and Applications to Hematopoietic Differentiation[J]. Proc Nail Acad Sci USA, 1999, 96(6) : 2907-2912.

共引文献7

同被引文献98

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部