期刊文献+

求解TSP问题的三角形编码抗体克隆选择算法 被引量:2

Hyper-mutation antibody clone algorithms for TSP
下载PDF
导出
摘要 在探讨遗传算法求解TSP问题中编码方式和交叉、变异算子作用特点的基础上,发现模板理论已经不能很好地适应TSP问题,主要是因为非二值符号编码和交叉算子对边的过度破坏导致子代难以继承父代的优良模式.为了克服上述问题,提出一种三角形表示的路径编码方案,并给出相应的启发式路径搜索策略;引入生物免疫系统的克隆选择机理加强局部搜索,进而构造一种适合TSP问题求解的人工免疫系统算法———超变异抗体克隆选择算法(HACSA).典型TSP问题的求解表明,和Endoh等人的免疫算法和遗传算法相比,HACSA的计算复杂度相当,60%以上的求解结果达到或者超过问题已知的最优值,而相应的免疫算法和遗传算法几乎均陷入局部极值,无法获得满意的求解结果. According to the analysis of the affections of the coding strategies and the basic operators, including crossover and mutation, we find that the schema theory can not analyse the Genetic Algorithm very well when it is used to solve the Traveling Salesman Problems (TSP). Because the non-binary coding strategy and the crossover overly destroy the TSP path, the good schema of the parents can not be inherited effectively. In order to overcome the above shortcoming of the Genetic Algorithm, a new artificial immune system algorithm for TSP, Hyper-mutation Antibody Clone Selection Algorithm (HACSA~) , is put forward in this paper. A new triangle-based path representation is adopted, and some heuristic mutation strategies based on the triangle coding method are also designed. The antibody clonal selection theory of immunology is used to enhance the local search performance of the antibody. Both HACSA algorithm and the corresponding genetic algorithms are implemented to the typical traveling salesman problems respectively. Experiments indicate that HACSA, behaving as an evolutionary strategy, is shown to be capable of solving complex machine learning tasks effectively like TSP. The experimental results show that HACSA can achieve or exceed the known optimal solution in over 60% problems, but that almost all the corresponding immune system algorithms and genetic algorithms fall into the local maximum, and they can not lead to the satisfied solutions.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第3期527-534,共8页 Journal of Xidian University
基金 国家自然科学基金资助(5050503470671083) 教育部"新世纪优秀人才支持计划"资助(NCET-07-0668) 西安交通大学"985工程"二期重点项目资助(07200701)
关键词 TSP问题 人工免疫系统 克隆选择 遗传算法 traveling salesman problems (TSP) artificial immune system clonal selection genetic algorithms
  • 相关文献

参考文献13

  • 1Michalewicz Z. Genetic Algorithm +Data Structure = Evolution Programs [M]. Berlin Heidelberg: Springer- Verlag, 1996.
  • 2Dasgupta D, Forrest S. Artificial Immune Systems in Industrial Applications[C]//IPMM'99. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. Honolulu: IEEE press, 1999: 257-267.
  • 3Gong Maoguo, Jiao Licheng, Du Haifeng, et al. Multiobjective Immune Algorithm with Nondominated Neighbor-based Selection[J]. Evolutionary Computation, 2008, 16(2) : 225-255.
  • 4GONG MaoGuo,JIAO LiCheng,MA WenPing,DU HaiFeng.Multiobjective optimization using an immunodominance and clonal selection inspired algorithm[J].Science in China(Series F),2008,51(8):1064-1082. 被引量:6
  • 5尚荣华,马文萍,焦李成,张伟.用于求解多目标优化问题的克隆选择算法[J].西安电子科技大学学报,2007,34(5):716-721. 被引量:8
  • 6马文萍,尚荣华,焦李成.免疫克隆优化聚类技术[J].西安电子科技大学学报,2007,34(6):911-915. 被引量:8
  • 7戚玉涛,刘芳,焦李成.求解TSP问题免疫算法的动态疫苗策略[J].西安电子科技大学学报,2008,35(1):37-42. 被引量:8
  • 8De Castro L N, Von Zuben F J. Learning and Optimization Using the Clonal Selection Principle[J]. IEEE Trans on Evolutionary Computation, 2002, 6(3): 239-251.
  • 9Kim J, Bentley P J. Towards an Artificial Immune System for Network Intrusion Detection: an Investigation of Dynamic Clonal Selection[C]//Proceedings of Congress on Evolutionary Computation. Hawaii: IEEE Press, 2002: 1015-1020.
  • 10Larranaga P, Kuijpers C M H, Murga R H, et, al. Genetic Algorithms for the Traveling Salesman Problem: a Review of Representations and Operators[J]. Artificial Intelligence Review, 1999, 13(2): 129-170.

二级参考文献35

  • 1刘若辰,杜海峰,焦李成.基于柯西变异的免疫单克隆策略[J].西安电子科技大学学报,2004,31(4):551-556. 被引量:9
  • 2HaiyanPan,JunZhu,DanfuHan.Genetic Algorithms Applied to Multi-Class Clustering for Gene Ex-pression Data[J].Genomics, Proteomics & Bioinformatics,2003,1(4):279-287. 被引量:9
  • 3DU Haifeng,GONG Maoguo,LIU Ruochen,JIAO Licheng.Adaptive chaos clonal evolutionary programming algorithm[J].Science in China(Series F),2005,48(5):579-595. 被引量:5
  • 4GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 5Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation. 2002, 6(2): 182-197.
  • 6Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm [R]. Zurich: Computer Engineering and Networks Laboratory (TIK), Swiss Federal Inst. Technology (ETH), 2001.
  • 7Jiao Licheng, Gong M G, Shang R H, et al. Clonal Selection with Immune Dominance and Anergy Based Multiobjective Optimization[C]//EMO'05, Berlin: Springer-Verlag, 2005:474-489.
  • 8Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results[J]. Evolutionary Computation, 2000, 8(2):173-195.
  • 9Schaffer J D. Multiple Objective Optimization with Vector Ecaluated Genetic Algorithms[D]. Nashville: Vanderbilt University, 1984.
  • 10Fonseca C M, Fleming P J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generation[C]//Proceedings of the 5th International conference on Genetic Algorithms. San Mateo: Morgan Kaufmann, 1993: 416-423.

共引文献25

同被引文献26

  • 1温广辉,王明旭,郭嗣琮.一种求解 TSP 问题的新型遗传编码方案[J].科学技术与工程,2006,6(2):206-208. 被引量:8
  • 2Tasan, A. S. Gen, M. , A genetic algorithm based approach to vehicle routing problem with simultaneous pick - up and deliveries, Computers and Industrial Engineering (CIE), 2010,40th, pagesl - 5.
  • 3Lee, M. - J. Yee, J. R. , An efficient near - optimal algorithm for the joint traffic and trunk routing problem in self - planning networks, INFOCOM '89. Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies,23 -27 Apr 1989, pages 127 -135.
  • 4Mehdizadeh, K. Nekoui, M. A. A Modified DNA - Computing Sabahi, K. Akbarimajd, A. , Algorithm To Solve TSP,Mechatronics, IEEE International Colfference on. 2006, pages 65 - 68.
  • 5Fajar, A. Abu, N.A. Herman, N. S. , Initial Result of Clustering Strategy to Euclidean TS, Soft Computing and Pattern Recognition ,2009 , pages 13 - 17.
  • 6Lope, H. S. Coelho, L. S. , Particle Swam Optimization with Fast Local Search tor the Blind Traveling Salesman Problem, Hybrid Intelligent Systems, 6 - 9 NOV. 2005, pages 245 - 250.
  • 7Ali Khan,S. Asghar,S. Fong, S. , Modeling TSP with Particle Swarm Optimization and Genetic Algorithm, Advanced Information Management and Service ( IMS ) , 2010, pages 455 - 459.
  • 8Li - Ying Wang Jie Zhang Hua I,i, An hnproved Genetic Algorithm for TSP, Machine Learning and Cybernetics, 19 - 22 Aug. 2007, pages 925 - 928.
  • 9Geetha, R. R. Bouvanasilan, N. Seenuvasan, V. , A perspective view on Travelling Salesman Problem using genetic algorithm, Nature & Biologically Inspired Computing,9 - 11 Dec. 2009, pages 356 - 361.
  • 10Pullan, W. , Adapting the genetic algorithm to the travelling salesman problem, Evolutionary Computation, 8 - 12 Dec. 2003 ,pages 1029 - 1035.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部