期刊文献+

一种新的拓扑熵:余紧拓扑熵 被引量:2

A new entropy:The entropy of co-compact open cover
下载PDF
导出
摘要 对一般的Hausdorff拓扑空间上的完备映射定义了余紧拓扑熵。余紧拓扑熵是Alder意义下熵的推广,但又不同于Bowen意义下的熵,它是不同度量下所有Bowen意义下熵的下界。此外,把Lebesgue数定理从紧度量空间上的开覆盖推广到任意度量空间上的余紧开覆盖。 Adler,Konheim and McAndrew introduced the concept of topological entropy of a continuous mapping for compact dynamical systems. Bowen generalized the concept to non-compact metric spaces ,but Bowen's entropy is metric-dependent .We propose a new definition of topological entropy for prefect mappings on arbitrary Hausdorff topological spaces(compactness, metrizability not necessarily required),investigate fundamental properties of the new entropy, and compare the new entropy with the existing ones. The defined entropy generates that of Adler, Konheim and MeAndrew and is metric-independent for metrizable spaces .Yet it holds various basic properties of Adler, Konheim and McAndrew's entropy ,e.g. ,the entropy of a subsystem is bounded by that of the original system ,topologically conjugated systems have a same entropy.
出处 《西北大学学报(自然科学网络版)》 CAS 2009年第1期1-13,共13页
基金 陕西省自然科学基金资助项目(SJ08A24)
关键词 拓扑熵 完备映射 余紧开集 余紧开覆盖 LEBESGUE常数 拓扑共轭 dynamical system perfect mapping co compact open cover topological entropy topological conjugacy Lebesgue constant
  • 相关文献

同被引文献29

  • 1Adler R L, Konheim A G, Mcandrew M H. Topological entropy[J]. Trans. Amer. Math. Soc., 1965,114(2):309- 319.
  • 2Bowen It. Topological entropy and axiom A[J]. Proc. Symp. PureMath. AmMath. Soc., 1970,14:23-42.
  • 3Liu L, Wang Y G, Wei G. Topological entropy of continuous functions on topological spaces[J].Chaos, Solitons and Fraetals, 2009,39:417-427.
  • 4Canovas J S, Rodriguez .l M. Topological entropy of maps on the real line[J]. Topology and its Applications, 2005,15,3:735-746.
  • 5Malziri M, Molaci M R. An extension of the notion of the Topological entropy[J]. Chaos, Solitons and Vractats, 2008,36:370-373.
  • 6Canovas J S, Lopez G S. Topological entropy for induced hyperspaces maps[J]. Chaos, Solitons and Fractals, 2006,28:979-982.
  • 7Kwietniak D, Opocha P. Topological entropy and chaos for maps induced on hyperspaces[J]. Chaos, Solitons and Fractals, 2007,33:76-86.
  • 8Lampart M, Raith P. Topological entropy for set valued maps[J]. Nonlinear Analysis, 2010,73:1533-1537.
  • 9Wang Y G, Wei G, Campbell W H, et al. A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology[J]. Chaos, Solitons and Fractals, 2009,41:1708-1717.
  • 10Wang Y G, Wei G. Characterizing mixing, weak mixing and transitivity of induced hyperspace dynamical systems[J]. Topology and its Applications, 2007,155:56-68.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部