摘要
给出有限维结合代数上表示可约性的两个判别法。它们是,(Ⅰ)若是有限维结合代数A上的表示,其表示矩阵为a,且存在非零元a∈Z(A),使得T(a)≠0,而detT(a)≠0,则是可约的;(Ⅱ)若是有限维结合代数A上的正则表示,其反表示矩阵为S(a),则是既约的充要条件为:a∈A,a≠0,有detS(a)≠0。
Two criteria for the reducibility of presentations of finite dimensional associatie algebras are presented. One is that let φ be a representation on a finite dimensional associative algebra A , its representative matrix be T(a),and there exist an element a∈Z(A), a≠0,where Z(A) is the centralizer of A, such that T(a)≠0 and det T(a)=0,then φ is reducible. The other is that let φ be a regular representation on a finite dimensional associative algebra A, and its anti represetative matrix is S(a), then φ is irreducible if and only if det S(a)≠0 for any non zero element a in A.
出处
《西南交通大学学报》
EI
CSCD
北大核心
1998年第3期347-350,共4页
Journal of Southwest Jiaotong University
关键词
代数
可约性
结合代数
有限维
algebra
reducibility
associative algebra