摘要
设G是有限无向简单图.{a,b}V(G),N[a]=N(a)∪{a}.令J(a,b)={u|u∈N(a)∩N(b)且N(u)N[a]∪N[b]}.G称为G的部分平方图:V(G)=V(G),E(G)=E(G)∪{ab|abE(G),J(a,b)≠}.设G是(k+1)连通图(k≥2),{u1,u2}V(G).本文主要结论:(a)设Gw是G中添加新顶点w及新边wu1,wu2所得的图.若对任意Y∈Ik+1(Gw),且YV(G),在G中,有k+1i=1aisi(Y)>n(Y),则G有Hamilton(u1,u2)路.(b)设Gw1w2是由G添加新顶点w1,w2及新边u1w1,w1w2,w2u2所得的图.若对于任意Y∈Ik+1(Gw1,w2),且YV(G),在G中,有k+1i=1aisi(Y)+sk+1(Y)>n(Y)+k+1,则G中最长的(u1,u2)路是D路.
Let G be an undirected finite simple graph. {a,b}V(G). Denote N=N(a)∪{a} and J(a,b)={uu∈N(a)∩N(b),N(u)N∪N}. A graph G is called the partially squared graph of G if V(G)=V(G ) and E(G )=E(G)∪{ababE(G),J(a,b)≠ }. Let I t(G)={YY be an independent set with Y=t}. In this paper,Let G be (k+1) connected graph with k≥2,{u 1,u 2}V(G), and non negative rational sequence (a 1,…,a k+1 ) be an LTW sequence . The following results are obtained.(a) Let G w be the graph obtained from G by adding a new vertex w and new edges wu 1,wu 2. If k+1i=1a isi(Y)>n(Y) in G for any Y∈I k+1 (G w) and YV(G), then G contains a hamilton (u 1,u 2) path . (b)Let G w 1w 2 be the graph obtained from G by adding two new vertices w 1,w 2 and three new edges u 1w 1,w 1w 2,w 2u 2. If k+1i=1a is i(Y)+s k+1 (Y)>n(Y)+k+1 in G for any Y∈I k+1 (G w 1w 2 ) and Y V(G) , then the longest (u 1,u 2) path in G is a dominating path.
出处
《河海大学学报(自然科学版)》
CAS
CSCD
1998年第3期56-60,共5页
Journal of Hohai University(Natural Sciences)