摘要
为了使用Fleury的算法,在每一步都必须去判断图G-e的连通性[1]。本文将给出一个十分简单的判断图的连通性的线性算法。为了证明它的正确性,本文将证明以下三个条件是等价的:(1)图G是连通的;(2)M的任意n-1行都是线性无关的(这里M为图G的关联矩阵);(3)在M中存在n-1个线性无关的行。
To use Fleury′s algorithm, we must decide the connectivity of a graph G e for each step . In this paper, we will provide a very simple linear algorithm to decide the connectivity of graphs. To prove its correctness, the following conditions are prove to be equivalent:(1)Graph G is connective;(2) Any n-1 rows of M are linearly independent (where M is the incidence matrix of graph G );(3) There are n-1 linearly independent rows in M .
出处
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
1998年第4期470-472,共3页
Journal of Nanjing University of Aeronautics & Astronautics
基金
国家自然科学基金
南京大学计算机重点实验室基金
关键词
图论
算法
数理逻辑
连通性
Fleury算法
graph theory
algorithm
mathematical logic
computational complexity
connectivity