期刊文献+

基于潜在成分和概率神经网络的时变结构系统的损伤识别 被引量:1

Damage Identification by Probabilistic Neural Networks Based on Latent Components for Time-Varying Structure System
下载PDF
导出
摘要 介绍了基于潜在成分(LC)分析和概率神经网络的损伤识别方法,并应用于一个实验室模型的损伤识别。结果表明,基于潜在成分(LC)分析和概率神经网络的损伤识别方法能在正常的时变质量情况下以较高的成功率对位于A或B处的某一损伤程度未知的损伤进行归类,为时变结构系统的定量损伤识别作出了有益的尝试。 A novel method of damage identification for health monitoring of a time-varying system is presented. The functional-series time-dependant automation auto regressive moving average (FS-TARMA) time series model is applied to vibration signal observed in time-varying system for estimating TAR/ TMA parameters and innovation variance. They are the time function represented by the group of projection coefficients on certain functional subspace with specific basis functions. The estimated TAR/ TMA parameters and innovation variance are further used to calculate the latent components (LCs) as the more informative data for health monitoring evaluation based on an eigenvalue decomposition tech- nique. LCs are then combined and reduced to numerical values as feature sets, which are input to proba- bilistic neural networks (PNNs) for damage classification. For evaluation of the proposed method, numerical simulations of the damage classification for a time-varying system are employed, in which different classes of damage are modeled by the mass or stiffness reductions. It is demonstrated that the method can discriminate the time varying nature of system parameters and damages occurring in the course of operation and causing the change of parameters. By using the proposed method, the success rate of classification will be enhanced compared with non-reduced and ordinary feature extraction methods.
作者 袁健 周燕
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第3期402-407,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(10772076)资助项目
关键词 时变结构 结构健康监测 损伤识别 潜在成分(LC) 概率神经网络 time-varying structure structure health monitoring damage identification latent components prohabilistic neural networks
  • 相关文献

参考文献11

  • 1郭健,孙炳楠.桥梁健康监测中的关键性问题和损伤识别方法[J].公路,2006,51(4):108-116. 被引量:11
  • 2李爱群,缪长青,李兆霞,韩晓林,吴胜东,吉林,杨玉冬.润扬长江大桥结构健康监测系统研究[J].东南大学学报(自然科学版),2003,33(5):544-548. 被引量:165
  • 3李俊萍,李霆.工程结构损伤识别技术的发展现状[J].华北工学院学报,2002,23(5):356-360. 被引量:15
  • 4Farrar C R,Doebling S W,Duffy T A, Comparative study of damage identification algorithms applied to a bridge[J]. smart mater struc, 1998,7 (5) : 704-719.
  • 5秦权.桥梁结构的健康监测[J].中国公路学报,2000,13(2):37-42. 被引量:216
  • 6Sakellariou J S, Fassois S D. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation[J]. Journal of Sound and Vibration,2006,297(3-5) :1048-1067.
  • 7Poulimenos A G, Fassois S D. Parametric time-domain methods for non-stationary random vibration modelling and analysis--A critical survey and compariso[J]. Mechanical Systems and Signal Processing 2006, 20(4) :763-816.
  • 8Zhan Y M, Jardine A K S. Adaptive autoregressive modeling of non-stationary vibration signals under distinct gear states. Part 1 : modeling[J]. Journal of Sound and Vibration, 2005,286 (3) : 429-450.
  • 9Zhan Y M, Jardine A K S. Adaptive autoregressive modeling of non-stationary vibration signals under distinct gear states. Part 2: experimental analysis [J].Journal of Sound and Vibration, 2005,286(3) :451-476.
  • 10West M, Prado R, Krystal A D. Evaluation and comparison of EEG traces: Latent structure in non- stationary time series[J]. Journal of the American Statistical Association (Applications and Case Studies) 1999,94(446) :375-387.

二级参考文献45

共引文献383

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部