期刊文献+

H_(2n+1)上一类非齐次不变微分算子的显式基本解

An Explicit Fundamental Solution for a Nonhomogeneous Differential Operator on the Heisenberg Group
下载PDF
导出
摘要 用随机分析方法,构造了Heisenberg群H2n+1上一类二阶非齐次不变微分算子P的显式基本解,并讨论了P的亚椭圆性和局部可解性.这里P=122nj,k=1ajkNjNk+2nj=1cjNj+γT.其中:A=(ajk)2n×2n是对称正定矩阵,cj(j=1,2,…,2n),γ是满足一定条件的复数.约定Nj=Lj,Nj+n=Mj,j=1,2,…,n.其中:L1,L2,…,Ln,M1,M2,…,Mn,T是H2n+1的左不变向量场. By using the stochastic methods, explicit fundamental solutions for one class of nonhomogeneous differential operators P on the Heisenberg group H 2n+1  are constructed and the hypoellipticity and local solvability of P are discussed . HereP=122nj,k=1a jk N jN k+2nj=1c jN j+γT.where A=(a jk ) 2n×2n  is positive matrix, c j,j=1,2,…,2n,γ are complex satisfying certain conditions. L 1,L 2,…,L n, M 1,M 2,…,M n,T are left invariant vector fields on H 2n+1 . We set N j=L j,N j+n =M j,j=1,2,…,n.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 1998年第2期7-15,共9页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金
关键词 HEISENBERG群 微分算子 基本解 扩散过程 Heisenberg group invariant differential operators fundamental solutions diffusion process
  • 相关文献

参考文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部