摘要
本文证明了如下的广义Calderón-Zygmund算子的一个权模不等式∫Rn|Tf(x)|pw(x)dx≤C∫Rn|f(x)|pM[p]+1w(x)dx其中T是θ(t)型Calderón-Zygmund算子,Mk是取k次Hardy-Litlewood极大算子,[p]是p的整数部分,1<p<+∞.
In this paper, we show that the following weighted norm inequalities of generalized CalderónZygmund operators holds∫Rn|Tf(x)|pw(x)dx≤C∫Rn|f(x)|pM+1w(x)dxwhere T is a θ(t) type CalderónZygmund operator, Mk is the HardyLittlewood maximal operator M iterated k times, and is the integer part of p, 1<p<+∞. We also give the following resultw({x∈Rn∶|Tf(x)|>λ})≤Cλ ∫Rn|f(x)|M2w(x)dx
出处
《青岛大学学报(自然科学版)》
CAS
1998年第2期1-5,共5页
Journal of Qingdao University(Natural Science Edition)
基金
山东省教委资助
关键词
广义
权模不等式
极大算子
积分算子
C-Z算子
generalized CalderónZygmund operator
weighted norm inequality
maximal operator