摘要
设随机变量X服从1,2,…,N上的均匀分布,(X1,X2,…,Xn)为来自X的一组简单随机样本,推导出了N的极大似然估计、一致最小方差无偏估计及Bayes估计,并在极大似然估计的基础上给出了N的区间估计及检验统计量,最后通过一个实例说明了上述方法的应用。
Let r.v. X is uniform distribution in {1,2,…, N } ( N is unkown),( X 1, X 2,…, X n ) is a simple sample from r.v. X .In this paper,they were obtained,the MLE,UMVUE and Bayesiun estimate of N .Based on the MLE of N ,the interval estimate and test statistics of N were given.Finally,these methods were illustrated by a example.
出处
《南京建筑工程学院学报》
1998年第2期60-64,共5页
Journal of Nanjing Architectural and Civil Engineering Institute(Natural Science)
关键词
离散型均匀分布
极大似然估计
统计推断
discrete uniform distribution
MLE
UMVUE
Bayes estimations
interval estimations
hypothesis testing