摘要
本文研究一类含弱奇异核记忆项的抛物型积分微分方程的空间离散有限元方法数值解,导出最优阶的误差估计,特别注意于非光滑初值情形。
The purpose in this paper is to discuss the numerical solution for spatially discrete finite element methods for an integro - differential equation of parabolic type with a memory term containing a weakly singular kernel. Optimal order estimates are derived. Special attention is paid the case of nonsmooth data.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第2期7-15,共9页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金!39570149
关键词
有限元
积分微分方程
弱奇异核
非光滑初值
finite element integro-differential equation weakly singular kernel nonsmooth data