期刊文献+

二元域乘法器的研究 被引量:1

Research on Multiplier over Binary Field
下载PDF
导出
摘要 特征为2的椭圆曲线密码的主要运算为标量乘运算,其中二元域的乘法运算性能是影响标量乘运算的重要因素。文章根据Karatsuba-Ofman算法,对256×256的二元域乘法器的实现作了理论分析,进而用速度面积乘积衡量了各种实现,并指出其中的最佳方案,为实际应用的选择提供了参考。并以集成电路的形式作了实现,并对结果进行分析。 The main operation of Elliptic Curve Cryptography over characteristic 2 finite field is scalar multiplication, the performance of which is mainly affected by performance of multiplication over binary field. Our research analyzes the multiplier with 256-bits inputs over binary field which is designed to conform to the Karatsuba-Ofman algorithm. The results of each implementation are compared by speed-area product. The best one is then concluded and the best choice of applications is recommended. At last, the muhiplier is implemented in the form of integrated circuits and the results are analyzed.
作者 艾树峰
出处 《中国电子科学研究院学报》 2009年第3期320-322,共3页 Journal of China Academy of Electronics and Information Technology
关键词 椭圆曲线密码 二元域乘法器 Kalatsuba—Offman乘法器 elliptic curve cryptography multiplier over binary field Kalatsuba-Offman muhiplier
  • 相关文献

参考文献7

  • 1KOBLITZ N. Elliptic Curve Cryptosystems[ J]. Mathematics of computation, 1987,48 ( 177 ) : 203-209.
  • 2SCHNEIER B.应用密码学-协议、算法与C源程序[M].吴世忠,等,译.北京:机械工业出版社,2006.
  • 3沈海斌,陈华锋,严晓浪.椭圆曲线密码加速器的设计实现[J].浙江大学学报(工学版),2006,40(9):1490-1493. 被引量:5
  • 4KARATSUBA A, OFMAN Y. Multiplication of Multidigit Numbers on Automata [J]. Soviet Physics Doklady, 1963 (7) :595-596.
  • 5ERDEM S S. Improving the Karatsuba-Ofman Multiplication Algorithm for Special Applications [ D ]. Department of Electrical and Computer Engineering, Oregon State University ,2001.
  • 6SMIC 0.18 μm Logic18 Process 1.8-Volt SAGE-XTM Stand- ard Cell Library Databook[ S]. Artisan Components,2003.
  • 7SMIC 130 nm Logic013G Process 1.2-Volt MetroTM v1.0 Standard Cell Library Databook [ S ]. Artisan Components, 2005.

二级参考文献8

  • 1MILLER V S.Use of elliptic curves in cryptography[C]∥Advances in Cryptology-CRYPTO '85 Proceedings.London,UK:Springer Verlag,1986:417-426.
  • 2HANKERSON D,LOPEZ J,MENEZES A.Software implementation of elliptic curve cryptography over binary fields[C]∥Proceedings of the Second International Workshop on Cryptographic Hardware and Embedded Systems.London,UK:Springer Verlag,2000:1-24.
  • 3LOPEZ J.DAHAB R.Fast multiplication on elliptic curves over GF(2m) without precomputation[C]∥Proceedings of the First International Workshop on Cryptographic Hardware and Embedded Systems.London,UK:Springer Verlag,1999:316-327.
  • 4JORGE G,CHRISTOF P.Itoh-Tsujii inversion in standard basis and its application in cryptography and codes[J].Designs,Codes and Cryptography,2001,25:207-216.
  • 5SATOH A,TAKANO K.A scalable dual-field elliptic curve cryptographic processor[J].IEEE Transactions on Computers,2003,52(4):449-460.
  • 6ERNST M,KLUPSCH S,HAUCK O,et al.Rapid prototyping for hardware accelerated elliptic curve public-key cryptosystems[C]∥ 12th IEEE Workshop on Rapid System Prototyping.[S.l.]:IEEE,2001:24-29.
  • 7OKADA S,TORII N,ITOH K,et al.Implementation of elliptic curve cryptographic coprocessor over GF(2m) on an FPGA[C]∥ Proceedings on Cryptographic Hardware and Embedded Systems.[S.l.]:IEEE,2000:25-40.
  • 8唐薛峰,沈海斌,严晓浪.GF(2^m)上椭圆曲线密码体制的硬件实现[J].计算机工程与应用,2004,40(11):96-98. 被引量:3

共引文献4

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部