期刊文献+

一种海洋磁力测量降噪的有效方法 被引量:5

A Novel Method for De-nosing in Marine Magnetic Survey
下载PDF
导出
摘要 波浪噪声和随机噪声是影响海洋磁力测量数据处理精度的重要因素。基于小波阈值消噪理论,研究了海洋磁力测量数据中的波浪和随机噪声的消除方法。仿真和实例计算表明:借助于小波的分解与重构,有效地减弱或消除了测量数据中的波浪和随机噪声,具有较高的精度和可靠性。该方法解决了传统的滑动拟合法对波浪和随机噪声与测量数据中的真实高频信息一起平滑过滤的局限性问题。 Wave noise and random noise are remarkable factors in influencing accuracy of processing of marine magnetic survey. Based on the basic theory of wavelet threshold, a method of de-nosing is presented to improve the precision of de-noising. Simulation and practical results shows that, by using wavelet decomposition and reconstruction, the method can efficiently remove wave and random noise of data. Moreover, compared with classic processing techniques, it has excellent accuracy and reliability. The method has solved localized problem of noise and real high frequency information in data is filtered with traditional slide fitting method.
出处 《测绘科学技术学报》 北大核心 2009年第3期200-203,共4页 Journal of Geomatics Science and Technology
基金 国家自然科学基金资助项目(40671161)
关键词 海洋磁力测量 小波阈值 滑动拟合 消噪 随机噪声 marine magnetic survey wavelet threshold slide fitting de-noising random noise
  • 相关文献

参考文献10

二级参考文献51

  • 1Benciolini B.A Note on Some Possible Geodetic Applications of Wavelets.Section Ⅳ Bulletin.International Association of Geodesy,1994.17~21
  • 2Barthelmes F,Ballani L,Klees R.On the Application of Wavelets in Geodesy.In:Sanso F ed.Proceedings of Ⅲ Hotine-Marussi Symposium on Mathematical Geodesy.Berlin:Springer-Verlag,1994.394~403
  • 3Freeden W,Windheuser U.Spherical Wavelet Transform and Its Discretization.Advances in Computational Mathematics,1996,5(1):51~94
  • 4Freeden W,Windheuser U.Combined Spherical Harmonic and Wavelet Expansion-A Future Concept in Earth's Gravitational Determination.Applied and Computational Harmonic Analysis,1997(4):1~37
  • 5Kusche J,Ilk K H,Rudolph S,et al.Application of Spherical Wavelets for Regional Gravity Field Recovery-A Comparative Study.In:Forsberg R.Geodesy on Move,IAG Symposia.Berlin:Springer-Verlag,1998
  • 6Salamonowicz P H.A Wavelet Based Gravity Model with an Application to the Evaluation of Stokes' Integral.In:Sideris M G ed.Gravity,Geoid and Geodynamics,IAG Symposia.Berlin:Springer-Verlag,2000
  • 7Freeden W,Schneider F.An Intergrated Wavelet Concept of Physical Geodesy.Journal of Geodesy,1998,72:259~281
  • 8Li Z F.Multiresolution Approximation of the Gravity Field.Journal of Geodesy,1996,70:731~739
  • 9Schmidt M,Fabert O,Shum C K.Multi-resolution Representation of the Gravity Field Using Spherical Wavelet.The Heiskanen Symposium in Geodesy,Ohio,2002
  • 10Gregory B,Robert C.Toward Multiresolution and Efficient Representation of Gravitational Fields.Celestial Mechanics and Dynamical Astronomy,2002,84(1):87~104

共引文献288

同被引文献47

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部