摘要
针对多目标网络覆盖中传感器节点和目标的关联关系,依据数据挖掘中的关联规则挖掘技术,设计了多目标关联覆盖算法MTACA.考虑到能量的有效性,利用关联规则挖掘方法动态地确定目标集合和传感器节点集合,通过节点集合工作状态的转换完成目标的完全覆盖,延长了网络使用寿命.同时,改进了适应区域覆盖的PEAS算法,使其适应多目标覆盖的应用.通过仿真对MTACA和改进的PEAS算法进行了性能分析.结果表明:MTACA算法和改进的PEAS算法在目标完全覆盖能力和网络使用寿命上明显优于随机部署网络;MTACA算法在目标完全覆盖能力、网络使用寿命、网络剩余能量以及节点间能量消耗均匀性上明显优于改进PEAS算法.
In view of the association between targets and sensor nodes in multiple targets coverage,a multiple targets associated coverage algorithm (MTACA) was proposed using data mining technology. Considering energy efficiency,targets sets and sensor nodes sets were defined with mining association rules. Coverage of total targets was achieved by work-state transferring of sensor nodes sets, and thus the network lifetime was prolonged. PEAS algorithm was advanced for multiple targets coverage. Performance analysis of the two algorithms were done by simulation. Results show that MTACA and advanced PEAS algorithm have better coverage and longer network lifetime than random deployment. MTACA is better than advanced PEAS algorithm in targets full coverage,network lifetime,network residual energy and energy consumption balance among sensor nodes.
出处
《天津大学学报》
EI
CAS
CSCD
北大核心
2009年第6期483-489,共7页
Journal of Tianjin University(Science and Technology)
基金
教育部博士点新教师基金资助项目(200800561053)
国家自然科学基金资助项目(60434030
60773181)
国家高技术研究发展计划(863)资助项目(2006AA01Z218)
关键词
多目标覆盖
无线传感器网络
能量优化
关联规则挖掘
PEAS算法
multiple targets coverage
wireless sensor network
energy-efficient
association rules mining
PEAS algorithm