期刊文献+

台风诱发暴潮极端潮位的预测方法 被引量:5

Prediction Method of Extreme Sea Level Induced by Typhoon
下载PDF
导出
摘要 以杭州湾为例,根据水文站历史潮位资料,采用改进的灰色马尔可夫预测模型对台风诱发暴潮的极端潮位进行预测。同时采用复合极值分布理论对可能出现的极端潮位进行概率预测,使预测结果更为接近真实数值。 Taking Hangzhou Bay as an example and according to the historical sea level data of hydrological stations, the paper proposes a improved grey-markov chain model to predict extreme sea level induced by typhoon. At the same time, it uses compound extreme value distribution(CEVD) theory to make possibility prediction for probable extreme sea level. In this way, prediction results are close to the real data.
作者 刘德辅 姜昊
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期516-520,共5页 Periodical of Ocean University of China
基金 国家自然科学基金项目(50679076)资助
关键词 极端潮位预测 杭州湾 灰色马尔可夫链 复合极值分布 extreme sea level Hangzhou Bay grey-markov chain compound extreme value distribution
  • 相关文献

参考文献12

  • 1吕振平,姚月伟.浙江省台风灾害及应急机制建设[J].灾害学,2006,21(3):69-71. 被引量:36
  • 2国家海洋局第二海洋研究所,浙江省水文勘测局,浙江省防汛防旱指挥部办公室.浙江沿海海平面上升预测及影响对策研究[R].浙江:杭州,2003.
  • 3Li J,Yue Z Q,Wong S C.Performance evaluation of signalized urban intersections under mixed traffic conditions[J].Journal of Transportation Engineering,2004,130:113-121.
  • 4邓聚龙.灰预测与决策[M],(第二版).武汉:华中科技大学出版社,2002.
  • 5赖红松,祝国瑞,董品杰.基于灰色预测和神经网络的人口预测[J].经济地理,2004,24(2):197-201. 被引量:64
  • 6何勇,鲍一丹.灰色马尔柯夫预测模型及其应用[J].系统工程理论与实践,1992,12(4):59-63. 被引量:75
  • 7邓聚龙.灰色系统(社会·经济)[M],(第一版).北京:国防工业出版社,1983.
  • 8Liu T F,Ma F S.Predictionof extreme wave heightsand wind velocities[J].Journal of the Waterway Port Coastal and Ocean Division,ASCE.1980,106:469-479.
  • 9Liu T F.Long term distributions of hurricane characteristics[C].Pro.Offshore Technology Conference OTC 4325,1982:305-313.
  • 10Langley R M,El-Shaarawi A H.On the calculation of extreme wave heights:A Review[J].Ocean Engineering,1986,13(1):93-118.

二级参考文献32

  • 1郭进修,李泽椿.我国气象灾害的分类与防灾减灾对策[J].灾害学,2005,20(4):106-110. 被引量:60
  • 2[3]Conner J T,Martin R D and Atlas L E.Recurrent Neural Networks and Robust Time Series Prediction[J].IEEE Transactions on Neural Networks,1994,5(2):240-254.
  • 3[4]Pandit S M,Wu Shenming.时间序列及系统分析与应用[M].北京:机械工业出版社,1988.
  • 4[5]Saad E W,Prokhorov D V and Wunsch D C. Comparative Study of Stock Trend Prediction Using Time Delay, Recurrent and Probabilistic Neural Networks[J]. IEEE Transactions on Neural Networks,1998,9(6):1456-1470.
  • 5[8]Bates J M and Granger C W. Combination of Forecasts[J]. Operational Res. Quart., 1969,20(4):451-468.
  • 6[11]Khotanzad A, Elragal H and Lu Tsun_Liang. Combination of Artificial Neural-Network Forecasters for Prediction of Natural Gas Consumption[J]. IEEE Transactions on Neural Networks,2000,11(2):464-473.
  • 7[12]温州市统计局.温州统计年鉴(2000)[M].北京:中国统计出版社,2000.
  • 8[1]Casson E,Coles S.2000.Simulation and extremal analysis of hurricane events.Appl Statist,49(2):227~245
  • 9[2]Coles Stuart G,Tawn Jonathan A.1991.Modeling extreme multivariate events.J R Statist.Soc (B),53 (2):337~392
  • 10[3]Gray W M.2003.Twentieth century challenges and milestones.Hurricane! Coping with Disaster.Washington,D C:NOAA by the American Geophysical Union,3~37

共引文献187

同被引文献69

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部