摘要
提出解非线性耦合Schrodinger方程的1种差分格式。理论证明此格式关于时间和空间具有二阶精度,保持了连续方程的2个守恒量,并且是收敛、无条件稳定的。大量的数值试验证明了差分格式的精度以及守恒性。
In this paper, we propose a conservative finite equations. It is proved that the precision in time and space the continuous equation is satisfied. Besides, the scheme is results show that the scheme has higher precision than the difference scheme for coupled nonlinear Schr dinger is both of the second order and the conservation for convergent and unconditional stable. The numerical other implicit schemes.
出处
《中国海洋大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第3期547-552,共6页
Periodical of Ocean University of China