期刊文献+

耦合非线性薛定谔方程的高精度守恒差分格式

A Highly Accurate and Conservative Finite Difference Scheme for Coupled Nonlinear Schrdinger Equations
下载PDF
导出
摘要 提出解非线性耦合Schrodinger方程的1种差分格式。理论证明此格式关于时间和空间具有二阶精度,保持了连续方程的2个守恒量,并且是收敛、无条件稳定的。大量的数值试验证明了差分格式的精度以及守恒性。 In this paper, we propose a conservative finite equations. It is proved that the precision in time and space the continuous equation is satisfied. Besides, the scheme is results show that the scheme has higher precision than the difference scheme for coupled nonlinear Schr dinger is both of the second order and the conservation for convergent and unconditional stable. The numerical other implicit schemes.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期547-552,共6页 Periodical of Ocean University of China
关键词 CNLSE 高精度差分格式 稳定性 守恒格式 CNLSE difference scheme stability conservative scheme
  • 相关文献

参考文献8

  • 1Ismail M S,Thiab R Taha.A linearly implicit conservative scheme for the coupled Nonlinear Schrodinger equation[J].Mathematics and Computers in Simulation,2007,74(4-5):302-311.
  • 2Ismail M S,Thiab R Taha.Numerical simulation of coupled nonlinear Schrodinger equation[J].Mathematics and Computers in Simulation,2001,56(6):547-562.
  • 3Ismail M S,Alamri S Z.Highly Accurate Finite Difference Method for Coupled Nonlinear Schr*;dinger equation[J].International Journal of Computer Mathematics,2004,81(3):333-351.
  • 4Ismail M S.Numerical Solution of Coupled Nonlinear Schr*;dinger Equation by Galerkin Method[J].Mathematics and Computers in Simulation,2008,78(4):532-547.
  • 5Yan Xu,Chi-Wang Shu.Local discontinuous Galerkin methods for nonlinear Schr*;dinger equations[J].Journal of Computational Physics,2005,205(1):72-97.
  • 6张鲁明.非线性Schrdinger方程的高精度守恒差分格式[J].应用数学学报,2005,28(1):178-186. 被引量:12
  • 7Wadati M,Izuka T,Hisakado M.A Coupled Nonlinear Schr dinger equation and optical solitons[J].Journal of the Physical Society of Japan,1992,61(7):2241-2245.
  • 8Yang J.Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics[J].Physical Review E,1999,59(2):2393-2405.

二级参考文献1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部