期刊文献+

几种流形学习算法的比较研究 被引量:4

A Comparative Study of Some Manifold Learning Algorithms
下载PDF
导出
摘要 如何发现高维数据空间流形中有意义的低维嵌入信息是流形学习的主要目的。目前,大部分流形学习算法都是用于非线性维数约简或是数据可视化的,如等距映射(Isomap),局部线性嵌入算法(LLE),拉普拉斯特征映射算法(laplacian Eigenmap)等等,文章对这三种流形学习算法进行实验分析与比较,目的在于了解这几种流形学习算法的特点,以便更好地进行数据的降维与分析。 How to obtain the highly nonlinear low-dimensional manifolds in the high-dimensional observation space is the goal of manifold learning. Currently, most of the manifold learning algorithms are applied to the nonlinear dimensionality reduction and data visualization, such as Isomap, LLE, Laplacian Eigenmap etc. This paper analysises and compares this three manifold learning algorithms by experiments, which reveals the characteristics of manifold learning algorithms for dimensionality reduction and data analyses.
出处 《电脑与信息技术》 2009年第3期14-18,共5页 Computer and Information Technology
基金 福建省自然科学基金资助项目(A0610021)
关键词 ISOMAP LLE LAPLACIAN Eigenmap isomap lle laplacian eigenmap
  • 相关文献

参考文献12

  • 1徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:67
  • 2TENENBAUM, VIN DE SILVA, LANGFORD. A Global Geometric Framework for Nonlinear Dimensionality Reduction [J] SCIENCE 2000.11.VOL290 pp2319.2323.
  • 3ROWELS, SAUL. Nonlinear Dimenslonality Reduction by Locally Linear Embedding[J] SCIENCE 2000.11.vol290. pp2323-2326.
  • 4XIAOFEI HE,SHUI CHENG YAN,YUXIAO HU. Face Recognition Using Laplaeianfaees[J] IEEE 2005.Vol. 27(3): 328-340.
  • 5JUNPING ZhANG ,LI, JUE WANG. Manifold learning and Applications in Recognition [C].Intelligent Multimedia Processing with Soft Computing. Heidelberg: Springer-Verlag, 2004.
  • 6宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 7赵连伟,罗四维,赵艳敞,刘蕴辉.高维数据流形的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430. 被引量:54
  • 8HONGYUAN ZHA, ZHANYUE ZHANG. Isometric Embedding and Continuum ISOMAP. [R In Proceedings of ICML'2003. 864-871.
  • 9MUKUND BALASUBRAMANIAN.The Isomap Algorithm and Topological Stability [J]SCIENCE 2001.8 VOL 295(5552).
  • 10YOSHUA BENGIO, MARTIN MONPERRUS Non-Local Manifold Tangent Learning [J]NIPS 2004. pp241 - 248.

二级参考文献68

  • 1宣国荣,柴佩琪.基于Chernoff上界的特征选择[J].模式识别与人工智能,1996,9(1):26-30. 被引量:2
  • 2刘伟权,王明会,钟义信.利用遗传算法实现手写体数字识别中特征维数的压缩[J].模式识别与人工智能,1996,9(1):45-51. 被引量:4
  • 3宣国荣,柴佩琪.基于巴氏距离的特征选择[J].模式识别与人工智能,1996,9(4):324-329. 被引量:16
  • 4[1]HYVRINEN A.Survey on independent component analysis[J].Neural Computing Surveys,1999,2 (4):94-128.
  • 5[2]TURK M,PENTLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3 (1):71-86.
  • 6[3]GONZALEZ R C,WOODS R E.Digital image processing:2nd ed[M].Beijing:Publishing House of Electronics Industry,2003.
  • 7[4]SEUNG H S,LEE D D.The manifold ways of perception[J].Science,2000,290(5500):2268-2269.
  • 8[5]TENENBAUM J,SILVA D D,LANGFORD J.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 9[6]ROWEIS S,SAUL L.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 10[9]ZHANG C S,WANG J,ZHAO N Y,ZHANG D.Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction[J].Pattern Recognition,2004,37(1):325-336.

共引文献150

同被引文献32

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部