期刊文献+

基于混沌优化支持向量机的轧制力预测 被引量:19

Rolling force prediction based on chaotic optimized support vector machine
原文传递
导出
摘要 针对带钢热连轧轧制力的精确预测问题,提出一种基于最小二乘支持向量机模型的预测算法.在分析最小二乘支持向量机数学预测模型的基础上,提出一种改进的结合遗传算法的变尺度混沌优化方法,以进行最优模型参数的搜索.利用实测在线数据对模型进行训练并进行轧制力预测.仿真结果表明,利用该方法可使轧制力预测精度得到提高,平均误差率从BP神经网络的±10%降到±5%以下,为进一步提高热连轧厚度控制精度提供了一种有效方法. Aiming at the exact prediction problem of rolling force in hot strip rolling mills, a prediction algorithm based on least square support vector machine is proposed. The prediction model of least square support vector machine is mathematically analyzed. And an improved multi-scale chaotic optimization algorithm combined with the genetic algorithm is proposed to optimize the model parameters. By using on-line data obtained from the factory, the model is trained and used for rolling force prediction. Simulation results show that the prediction accuracy is improved, and the average error rate decreases from ± 10% achieved by the BP neural network to less than ±5% by using the proposed algorithm. This algorithm provides a new method to improve the thickness control of hot strip rolling.
出处 《控制与决策》 EI CSCD 北大核心 2009年第6期808-812,共5页 Control and Decision
基金 国家自然科学基金项目(60774032) 教育部高等学校博士学科点专项科研基金项目(20070561006) 广州市科技攻关重点项目(2007Z2-D0121)
关键词 热连轧 轧制力预测 支持向量机 混沌优化 Hot rolling Rolling force prediction Support vector machine Chaotic optimization
  • 相关文献

参考文献13

二级参考文献67

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 3王建辉,徐林,闫勇亮,顾树生.改进粒子群算法及其对热连轧机负荷分配优化的研究[J].控制与决策,2005,20(12):1379-1383. 被引量:27
  • 4郝柏林.从抛物线谈起-混沌动力学引论[M].上海科技教育出版社,1995.1-20.
  • 5[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 6[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 7[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 8[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 9[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 10[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.

共引文献464

同被引文献178

引证文献19

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部