摘要
针对带钢热连轧轧制力的精确预测问题,提出一种基于最小二乘支持向量机模型的预测算法.在分析最小二乘支持向量机数学预测模型的基础上,提出一种改进的结合遗传算法的变尺度混沌优化方法,以进行最优模型参数的搜索.利用实测在线数据对模型进行训练并进行轧制力预测.仿真结果表明,利用该方法可使轧制力预测精度得到提高,平均误差率从BP神经网络的±10%降到±5%以下,为进一步提高热连轧厚度控制精度提供了一种有效方法.
Aiming at the exact prediction problem of rolling force in hot strip rolling mills, a prediction algorithm based on least square support vector machine is proposed. The prediction model of least square support vector machine is mathematically analyzed. And an improved multi-scale chaotic optimization algorithm combined with the genetic algorithm is proposed to optimize the model parameters. By using on-line data obtained from the factory, the model is trained and used for rolling force prediction. Simulation results show that the prediction accuracy is improved, and the average error rate decreases from ± 10% achieved by the BP neural network to less than ±5% by using the proposed algorithm. This algorithm provides a new method to improve the thickness control of hot strip rolling.
出处
《控制与决策》
EI
CSCD
北大核心
2009年第6期808-812,共5页
Control and Decision
基金
国家自然科学基金项目(60774032)
教育部高等学校博士学科点专项科研基金项目(20070561006)
广州市科技攻关重点项目(2007Z2-D0121)
关键词
热连轧
轧制力预测
支持向量机
混沌优化
Hot rolling
Rolling force prediction
Support vector machine
Chaotic optimization