期刊文献+

虚拟膝关节镜手术中保持单元质量的体网格形变方法

Quality-Preserving Deformation of Tetrahedral Meshes in Virtual Knee Arthroscopic Surgery
下载PDF
导出
摘要 在虚拟膝关节手术中,需要对膝关节进行大范围形变的实时模拟。本文针对四面体网格的膝关节模型,提出了采用LSD度量建立形变能量,然后将带约束的最优化问题转化为不带约束的最优化问题,最后通过带Armijo线性查找的非精确牛顿法求解最优化问题。在求解过程中,通过预估未知点的位置,减少迭代步数,提高了算法的效率。这种方法具有较好的保体积性,同时保证形变后的四面体网格不出现体元翻转和退化。该方法也能推广应用于其它类似的关节弯曲运动的变形中。 In the virtual knee arthroscopic surgery, a real-time large deformation of the knee joint model is required. Towards the tetrahedral model, we firstly employ the LSD metric to build the deformation energy. By converting the constrained optimization problem into an unconstrained one, the optimization can be performed by using the inexact Newton method with an Armijo line search method, Through estimating the unknown vertices, we reduce the iterations and enhance the efficiency of the algorithm. This approach can produce volume preserving and flip-free tetrahedral mesh results. The proposed method can also be applied to other applications involving join〉like deformations.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第7期46-49,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60773022) 国家863计划资助项目(2007AA01Z313) 北京市自然科学基金资助项目(4062034)
关键词 虚拟膝关节镜手术 四面体形变 LSD度量 最优化问题 virtual knee arthroscopic surgery tetrahedral deformation least scaling distortion (LSD) metric optimization problem
  • 相关文献

参考文献10

  • 1Lewis J P, Cordner M, Fong N. Pose Space Deformations: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation[C]//Proc of ACM SIGGRAPH'00,2000: 165-172.
  • 2Sumner R W,Popovir C. Deformation Transfer for Triangle Meshes[J]. ACM Trans on Graphies, 2004,23(3) : 399-405.
  • 3Zhou K, Huang J, Snyder J, et al. Large Mesh Deformation Using the Volumetric Graph Laplacians[J].ACM Trans on Graphics, 2005,24 (3) : 496-503.
  • 4Lipman Y, Cohen-Or D, Ran G, et al. Volume and Shape Preservation via Moving Frame Manipulation[J].ACM Trans on Graphics, 2007,26 (1): 28-34.
  • 5Freitag L, Ollivier C. Tetrahedral Mesh Improvement Using Swapping and Smoothing[J]. Numerical Methods in Engi- neering, 1997,40(21) :3979-4002.
  • 6Zhou K, Huang X,Wang X, et al. Mesh Quilting for Geometric Texture Synthesis[J]. ACM Trans on Graphics, 2006,25 (3):690-697.
  • 7Knupp P. Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities, Part II :A Framework for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix[J]. International Journal for Numerical Methods in Engineering, 2000,48(8) : 1165-1185.
  • 8Munson T S. Mesh Shape-Quality Optimization Using the Inverse Mean-Ratio Metric[J].Mathematical Programming, 2007,110(3) : 561-590.
  • 9Song Wenhao, Liu Ligang. Stretch-Based Tetrahedral Mesh Manipulation[C]//Proc of ACM Int' l Conf Proceeding Series, 2007: 319-325.
  • 10Armijo L. Minimization of Functions Having Lipschitz-Continuous First Partial Derivatives[J]. Pacific Journal of Mathematics, 1966,16(3) : 1-3.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部