期刊文献+

复杂背景中人脸检测与眼睛定位 被引量:1

Human Face Detection and Eyes Location in a Complex Background
下载PDF
导出
摘要 本文对Viola等人提出的基于类Haar特征及AdaBoost的人脸检测算法进行了改进,将原来的单一阈值弱分类器改为输出几乎可模拟任意概率分布的特征查找表(FST)弱分类器,构建出人脸检测模块;同时,训练左、右人眼分类器对输入图像进行眼睛定位,并且利用ROC曲线对改进算法收敛速度、人脸检测器和人眼检测器的性能与Viola-Jones算法进行了比较分析。结果表明,改进后的算法具有较高的检测率和较低的误警率。 The face detection method presented by Viola et al based on the Haar-like feature and the AdaBoost algorithm is improved. The original weak classifier with a single threshold value is substituted by Feature Search Table (FST) whose outputs can be suitable for almost any distribution. And we use the left and right eye classifier simultaneously for eyes locating. And we demonstrate the value of the ROC curves in evaluating and comparing the modified algorithm with the Viola-Jones algorithm in convergence rate,the capability of the face detector and the performance of the eye detector. It shows that the modified algorithm is better than the Viola-Jones algorithm, and it helps us improve the hit rate, and makes less falsc-alarrns rate.
作者 陈远 陈锻生
出处 《计算机工程与科学》 CSCD 北大核心 2009年第7期57-60,共4页 Computer Engineering & Science
基金 福建省自然科学基金资助项目(2006J0036)
关键词 类HAAR特征 连续的AdaBoost算法 特征查找表(FST) Haar-like feature real AdaBoost algorithm feature search table (FST)
  • 相关文献

参考文献6

  • 1Rowley H A. Neural Network-Based Human Face Detection: [Ph D Dissertation][D]. Carnegie Mellon University, 1999.
  • 2Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features[C]//Proc of IEEE Computer Society Conf on Computer Vision and Pattern Recognition, 2001:511-518.
  • 3Sehapire R E, Singer Y. Improved Boosting Algorithms Using Confidence-Rated Predictions[J]. Machine Learning, 1999,37 (3) :297-336.
  • 4Freund Y, Sehapire R E. Experiments with a New Boosting Algorithm[C]//Proc of the 13th Conf Machine Learning, 1996:145-156.
  • 5Lanitis A, Taylor C J, Cootes T F. An Automatic Face Identification System Using Flexible Appearance Models[C].//Proe of British Machine Vision Conf, 1994 :65-74.
  • 6Serre T,Kouh M,Cadieu C,et al. A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex[C]//Proc of the IEEE/ASME Int'l Conf on Advanced Mechatronics,Computer Vision and Pattern Recognition,2005.

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部