摘要
Limitations in the predictability of quantitative precipitation forecasting (QPF) that arise from initial errors of small amplitude and scale are investigated by means of real-case high-resolution (cloud-resolving) numerical weather prediction (NWP) integrations. The case considered is the hail and wind disaster that occurred in Sichuan on 8 April 2005. A total of three distinct perturbation methods are used. The results suggest that a tiny initial error in the temperature field can amplify and influence the weather in a large domain, changing the 12-h forecasted rainfall by as much as one-third of the original magnitude. Furthermore, the comparison of the perturbation methods indicates that all of the methods pinpoint the same region (the heavy rainfall areas in the control experiment) as suffering from limitations in predictability. This result reveals the important role of nonlinearity in severe convective events.
Limitations in the predictability of quantitative precipitation forecasting (QPF) that arise from initial errors of small amplitude and scale are investigated by means of real-case high-resolution (cloud-resolving) numerical weather prediction (NWP) integrations. The case considered is the hail and wind disaster that occurred in Sichuan on 8 April 2005. A total of three distinct perturbation methods are used. The results suggest that a tiny initial error in the temperature field can amplify and influence the weather in a large domain, changing the 12-h forecasted rainfall by as much as one-third of the original magnitude. Furthermore, the comparison of the perturbation methods indicates that all of the methods pinpoint the same region (the heavy rainfall areas in the control experiment) as suffering from limitations in predictability. This result reveals the important role of nonlinearity in severe convective events.
基金
supported by the National Natural Science Foundation of China (Grant No. 40775067)