期刊文献+

主成分分析法在油荧光光谱波段选择中的应用 被引量:11

Application of the PCA Method to Band Selection for Oil Fluorescence Spectrums
下载PDF
导出
摘要 355nm激光器发射激光入射到海水表面,激发海表面溢油的荧光光谱,运用高光谱图像降维中应用广泛的分段主成分分析算法对油荧光光谱进行波段选择。该算法把每个分段被映射到主成分的信息量的大小作为是否被选择的标准,保证了选择波段的信息丰富;通过分段分析消除了传统主成分分析的全局性引起的波段忽略问题,获得较为满意的降维效果。 The laser with the wavelength of 355nm irradiates to the sea surface, and excites the fluorescence spectrums of oils spilled on the sea surface. The segmented principal component analysis (PCA) algorithm widely used in the dimensionality reduction of hyper spectral image, was used to band selection according to oil fluorescence spectrums. This algorithm regards the amount of the information that ;s mappen into the given band as the selected criterion, it can ensure that the selected bands contain most principal components of a information of the original data. With the segmentation on original data, it can eliminate the problem of band neglect which was caused by global transform in traditional PCA algorithm. And the result of dimensionality reduction is advisable.
出处 《地理空间信息》 2009年第3期12-15,共4页 Geospatial Information
基金 国家863计划资助项目(2006AA06Z415)
关键词 激光油荧光光谱 分段主成分分析 波段选择 laser oil fluorescence spectrums segmented principal component analysis band selection
  • 相关文献

参考文献6

  • 1Drozdowska V, Babichenko S and Lisin A. Natural Water Fluorescence Characteristics Based on Lidar Investigations of a Surface Water Layer Polluted by an Oil Film; the Baltic Cruise - May 2000[J]. OCEANOLOGIA, 2002, 44 (3): 339-354
  • 2JimenezLuis O, Rivera-Medina Jorge L. Integration of Spatial and Spectral Information Homogenous by Means of Unsupervised Extraction and Classification of Objeets Applied to Multispectral and Hyperspectral Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(4):844-851
  • 3Kambhatla N, Leen R. Dimension Reduction by Local Principal Component Analysis [J]. Neural Computation, 1997,9 (7): 1493-1516
  • 4Manolakis D, Marden D. Dimensionality Reduction of Hyperspectral Imaging Data Using Local Principal Components Transforms[J].Proceedings of SPIE,2004,54(25):393-401
  • 5杨诸胜,郭雷,罗欣,胡新韬.基于分段主成分分析的高光谱图像波段选择算法研究[J].测绘工程,2006,15(3):15-18. 被引量:11
  • 6赵选民,徐伟,师义民.数理统计[M].北京:科学出版社,2003.

二级参考文献7

  • 1G.Hughes.On the Mean Accuracy of Statistical Pattern Recognizers.IEEE Transactions on Information Theory,1968,IT 14(1):55-639.
  • 2N.Kambhatla and R.A.Leen.Dimension reduction by local principal component analysis[J].Neural Computation,1997,9(7):1493-1516.
  • 3D.Manolakis and D.Marden.Dimensionality reduction of hyperspectral imaging data using local principal components transforms[J].Proceedings of SPIE,2004,5425:393-401.
  • 4D.F.Michael and R.M.Mersereau.On the impact of PCA dimension reduction for hyperspectral detection of difficult targets[J].IEEE Geoscience and Remote Sensing Letters,2005,2(2):192-195.
  • 5Huang Rui,He Mingyi.Band selection based on feature weighting for classification of hyperspectral data[J].IEEE Geoscience and Remote Sensing Letter,2005,2(2):156-159.
  • 6赵选民,徐伟,师义民.数理统计[M].北京:科学出版社,2003.
  • 7Jia Xiuping,J.A.Richards.Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification[J].IEEE Geoscience and Remote Sensing,1999,37(1):538-542.

共引文献18

同被引文献108

引证文献11

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部