期刊文献+

基于BP神经网络的汽油抗爆剂敏感性预测 被引量:2

The Sensitivity of Gasoline Antiknock Forecast Based on BP Neural Network
下载PDF
导出
摘要 研究了基于BP神经网络的建模方法,将其应用于93号汽油调合系统中研究法辛烷值的预测,考虑了93号高牌号汽油调合生产中组份比例、MMT加入比例、罐底油量、满罐油量、罐底辛烷值和空白辛烷值对成品辛烷值的影响,利用该模型对兰州石化公司实测值进行训练和测试.应用结果表明,该模型的预测精度完全能达到工业生产的要求,基本合理可靠. Modeling method based on BP neural network is studied,in which the No. 93 high--grade gas- oline is applied to the gasoline blending system in the forecast of octane number. It considered the No. 93 high--grade gasoline blending components in the production ratio, of the Join ratio MMT, the bottom of oil cans, full fuel tank, the tank with the bottom and the blank octane number impact on the finished octane number. This model is used in training and testing for Lanzhou Petrochemical Company procee- ded, the result shows that the forecast accuracy of the model achieves the requirements of industrial production, which is reasonable and reliable.
作者 国强 梁成龙
出处 《兰州工业高等专科学校学报》 2009年第3期4-7,共4页 Journal of Lanzhou Higher Polytechnical College
关键词 BP神经网络 93号汽油 汽油调合 研究法辛烷值 BP neural network No. 93 high-- grade gasoline gasoline blending research octane number
  • 相关文献

参考文献5

二级参考文献29

共引文献59

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部